
FBMath

Math library for FreeBasic

Jean Debord

August 26, 2010

Contents

1 Installation and compilation 7
1.1 Introduction . 7
1.2 Unpacking the archive . 7
1.3 Installation under Windows 7

1.3.1 Automatic installation 7
1.3.2 Manual installation . 8
1.3.3 Recompiling the library 8

1.4 Installation under Linux . 8
1.4.1 Compilation of the library 8
1.4.2 Installation . 8
1.4.3 Demo programs . 9

1.5 Compilation of a program . 9
1.5.1 Linking to the whole libraries 9
1.5.2 Using specific modules 10

2 Numeric precision 11
2.1 Numeric precision . 11
2.2 Demo program . 12

3 Elementary functions 13
3.1 Constants . 13
3.2 Error handling . 14
3.3 Minimum and maximum . 14
3.4 Rounding functions . 14
3.5 Logarithms and exponentials 15
3.6 Trigonometric functions . 15
3.7 Hyperbolic functions . 15
3.8 Demo programs . 16

3.8.1 Function accuracy . 16
3.8.2 Computation speed . 16
3.8.3 Function plotter . 16

1

3.8.4 Contour plot . 17

4 Special functions 18
4.1 Factorial . 18
4.2 Gamma function . 18
4.3 Polygamma functions . 19
4.4 Beta function . 20
4.5 Error function . 20
4.6 Lambert’s function . 20
4.7 Demo programs . 21

5 Probability distributions 22
5.1 Binomial distribution . 22
5.2 Poisson distribution . 23
5.3 Standard normal distribution 23
5.4 Student’s distribution . 24
5.5 Khi-2 distribution . 25
5.6 Snedecor’s distribution . 25
5.7 Exponential distribution . 26
5.8 Beta distribution . 26
5.9 Gamma distribution . 27
5.10 Demo programs . 27

6 Matrices and linear equations 28
6.1 Programming conventions . 28
6.2 Error codes . 29
6.3 Gauss-Jordan elimination . 29
6.4 LU decomposition . 30
6.5 QR decomposition . 31
6.6 Singular value decomposition 32
6.7 Cholesky decomposition . 33
6.8 Eigenvalues and eigenvectors 33

6.8.1 Definitions . 33
6.8.2 Symmetric matrices . 34
6.8.3 General square matrices 34

6.9 Demo programs . 35
6.9.1 Determinant and inverse of a square matrix 35
6.9.2 Hilbert matrices . 36
6.9.3 Gauss-Jordan method: single constant vector 37
6.9.4 Gauss-Jordan method: multiple constant vectors 37
6.9.5 LU, QR and SV decompositions 38

2

6.9.6 Cholesky decomposition 38
6.9.7 Eigenvalues of a symmetric matrix 38
6.9.8 Eigenvalues of a general square matrix 38
6.9.9 Eigenvalues and eigenvectors of a general square matrix 39

7 Function minimization 41
7.1 Functions of one variable . 41
7.2 Functions of several variables 42

7.2.1 Minimization along a line 42
7.2.2 Newton-Raphson method 43
7.2.3 Approximate gradient and hessian 45
7.2.4 Marquardt method . 45
7.2.5 BFGS method . 46
7.2.6 Approximate gradient 47
7.2.7 Simplex method . 47

7.3 Demo programs . 47
7.3.1 Function of one variable 47
7.3.2 Minimization along a line 48
7.3.3 Newton-Raphson method 48
7.3.4 Approximate gradient and hessian 49
7.3.5 Other programs . 49

8 Nonlinear equations 50
8.1 Equations in one variable . 50

8.1.1 Bisection method . 50
8.1.2 Secant method . 51
8.1.3 Newton-Raphson method 51

8.2 Equations in several variables 52
8.2.1 Newton-Raphson method 52
8.2.2 Approximate jacobian 54
8.2.3 Broyden’s method . 54

8.3 Demo programs . 55
8.3.1 Equations in one variable 55
8.3.2 Equations in several variables 55

9 Polynomials 56
9.1 Polynomials . 56
9.2 Rational fractions . 56
9.3 Roots of polynomials . 56

9.3.1 Analytical methods . 56
9.3.2 Iterative method . 57

3

9.4 Ancillary functions . 57
9.5 Demo programs . 58

9.5.1 Evaluation of a polynomial 58
9.5.2 Evaluation of a rational fraction 58
9.5.3 Roots of a polynomial 58

10 Numerical integration and differential equations 59
10.1 Integration . 59

10.1.1 Trapezoidal rule . 59
10.1.2 Gauss-Legendre integration 59

10.2 Convolution . 60
10.3 Differential equations . 60
10.4 Demo programs . 63

11 Fast Fourier Transform 65
11.1 Introduction . 65
11.2 Programming . 66

11.2.1 Array dimensioning . 66
11.2.2 FFT procedures . 66

11.3 Demo program . 67

12 Random numbers 69
12.1 Random numbers . 69

12.1.1 Uniform random numbers 69
12.1.2 Gaussian random numbers 70

12.2 Markov Chain Monte Carlo 70
12.3 Simulated Annealing . 73
12.4 Genetic Algorithm . 76
12.5 Demo programs . 78

12.5.1 The MWC generator 78
12.5.2 Test of MT generator 79
12.5.3 The UVAG generator 79
12.5.4 File of random numbers 79
12.5.5 Gaussian random numbers 79
12.5.6 Multinormal distribution 80
12.5.7 Markov Chain Monte-Carlo 80
12.5.8 Simulated Annealing 81
12.5.9 Genetic Algorithm . 81

4

13 Statistics 82
13.1 Descriptive statistics . 82
13.2 Comparison of means . 84

13.2.1 Student’s test for independent samples 84
13.2.2 Student’s test for paired samples 85
13.2.3 One-way analysis of variance (ANOVA) 85
13.2.4 Two-way analysis of variance 87

13.3 Comparison of variances . 88
13.3.1 Comparison of two variances 88
13.3.2 Comparison of several variances 89

13.4 Non-parametric tests . 89
13.4.1 Mann-Whitney test . 90
13.4.2 Wilcoxon test . 90
13.4.3 Kruskal-Wallis test . 91

13.5 Statistical distribution . 92
13.6 Comparison of distributions 92

13.6.1 Observed and theoretical distributions 92
13.6.2 Several observed distributions 93

13.7 Demo programs . 94
13.7.1 Descriptive statistics, comparison of means and variances 94
13.7.2 Student’s test for paired samples 94
13.7.3 One-way analysis of variance 95
13.7.4 Two-way analysis of variance 95
13.7.5 Statistical distribution 95
13.7.6 Comparison of distributions 96

14 Linear regression 97
14.1 Straight line fit . 97
14.2 Analysis of variance . 99
14.3 Precision of parameters . 100
14.4 Probabilistic interpretation . 100
14.5 Weighted regression . 101
14.6 Programming . 102

14.6.1 Regression procedures 102
14.6.2 Quality of fit . 103

14.7 Demo programs . 103
14.7.1 Unweighted linear regression 104
14.7.2 Weighted linear regression 104

5

15 Multilinear regression and principal component analysis 105
15.1 Multilinear regression . 105

15.1.1 Normal equations . 105
15.1.2 Analysis of variance . 106
15.1.3 Precision of parameters 107
15.1.4 Probabilistic interpretation 107
15.1.5 Weighted regression . 107
15.1.6 Programming . 108

15.2 Principal component analysis 108
15.2.1 Theory . 108
15.2.2 Programming . 109

15.3 Demo programs . 110
15.3.1 Multilinear regression 110
15.3.2 Polynomial regression 111
15.3.3 Principal component analysis 112

16 Nonlinear regression 113
16.1 Theory . 113
16.2 Monte-Carlo simulation . 115
16.3 Demo programs . 116

16.3.1 Nonlinear regression 116
16.3.2 Monte-Carlo simulation 117

17 String functions 118
17.1 Fill functions . 118
17.2 Character replacement . 118
17.3 Parsing . 118
17.4 Formatting functions . 119

6

Chapter 1

Installation and compilation

1.1 Introduction

Welcome to FBMath, a mathematical package for the FreeBasic compiler.
FBMath is entirely written in FreeBasic and does not depend on external
libraries. FBMath is comprised with two independent libraries:

• a general library (libfbmath) for numerical analysis, including mathe-
matical functions, probabilities, random numbers, matrices, linear and
nonlinear equations, optimization, statistics and graphics.

• a ‘Large Integer’ library (liblargeint), contributed by Sjoerd J. Schaper.

This chapter explains how to install the FBMath package and how to
compile a program which uses it.

1.2 Unpacking the archive

Extract the archive fbmat[...].zip (where [...] stands for version number)
in a given directory.

Be sure to preserve the directory structure. For instance, if you use
pkunzip, add the option -d (i. e. pkunzip -d fbmat[...].zip).

1.3 Installation under Windows

1.3.1 Automatic installation

Run the compil.bat script which is located in the demo subdirectory of the
installation directory.

7

This script will compile all demo programs and install the library files in
the relevant directories.

Note: The script assumes that the FreeBasic compiler is installed in
C:\FreeBASIC. If this is not the case, you will have to edit the batch file.

1.3.2 Manual installation

• Copy the library files libfbmath.a and liblargeint.a to the lib sub-
directory of the FreeBasic directory (usually \FreeBASIC\lib\win32)

• Copy the include files fbmath.bi and largeint.bi to the inc subdi-
rectory of the FreeBasic directory (usually \FreeBASIC\inc)

1.3.3 Recompiling the library

If you have to recompile the library (e. g. after modifying the source code),
run the compil.bat script which is located in the modules subdirectory of
the installation directory.

You may have to edit the batch file, for instance to modify the paths for
the compiler and the library manager (ar.exe), or if you add a directory to
the source code.

1.4 Installation under Linux

1.4.1 Compilation of the library

Run the shell script compil.sh located in the modules subdirectory. This
will create the two library files, libfbmath.a and liblargeint.a.

1.4.2 Installation

• Copy the library files into the appropriate FreeBasic subdirectory (usu-
ally /usr/local/lib/freebasic/linux).

• Copy the include files fbmath.bi and largeint.bi into the appropri-
ate FreeBasic subdirectory (usually /usr/local/inc/freebasic).

You will probably have to become root to perform these operations.

8

1.4.3 Demo programs

The script compil.sh located in the demo subdirectory will compile all demo
programs.

1.5 Compilation of a program

1.5.1 Linking to the whole libraries

Add the following line at the beginning of the program:

#INCLUDE "fbmath.bi"

or

#INCLUDE "largeint.bi"

depending on which library is used (it is possible to use both in the same
program).

Note: If you want to use the graphic functions, you must also add:

#INCLUDE "fbgfx.bi"

Then compile the program in the usual way, e. g. use the following
command in a DOS box or Linux terminal:

fbc prog.bas

Note: Under Windows, the complete path to the compiler must be in-
cluded in the environment variable PATH, which is defined in the AUTOEXEC.BAT
file located in the root directory of the computer. This file should therefore
contain a line like:

PATH= ... C:\FreeBASIC; ...

(or equivalent)

9

1.5.2 Using specific modules

You can also select from the source files the modules containing the functions
of interest and add them to your project. Note that some modules require
functions from other modules (these functions are listed in the ‘External
functions’ section of each module). Be sure to add these additional modules
too, if necessary.

Example: We have a program prog.bas which computes some factorials
by calling function Fact which is defined in module fact.bas. However,
looking at the ‘External function’ section in this module indicates that it
requires function Gamma which is defined in module gamma.bas. So, we have
to add both fact.bas and gamma.bas to our project (and only these two,
because looking at gamma.bas shows that no external function is needed).

Then, we place the declaration of function Fact in our main module,
prog.bas:

DECLARE FUNCTION Fact(N AS INTEGER) AS DOUBLE

We no longer need to add #INCLUDE "fbmath.bi"

We can then compile our program, assuming that all modules have been
placed in the same working directory:

fbc prog.bas fact.bas gamma.bas

(Note that the main module is the first).

10

Chapter 2

Numeric precision

2.1 Numeric precision

All computations are performed in double precision (type DOUBLE, i.e. 8-byte
real).

FBMath defines the following constants:

Constant Meaning
MachEp The smallest real number such that (1.0 + MachEp) has a

different representation (in the computer memory) than 1.0;
it may be viewed as a measure of the numeric precision
which can be reached within the given floating point type.

MaxNum The highest real number which can be represented.
MinNum The lowest positive real number which can be represented.
MaxLog The highest real number X for which Exp(X)

can be computed without overflow.
MinLog The lowest (negative) real number X for which Exp(X)

can be computed without underflow.
MaxFac The highest integer for which the factorial can be computed.
MaxGam The highest real number for which the Gamma function

can be computed.
MaxLgm The highest real number for which the logarithm

of the Gamma function can be computed.

11

2.2 Demo program

The program testmach.bas located in the demo\fmath subdirectory checks
that the machine-dependent constants are correctly handled by the computer.

This program lists the values of the machine-dependent constants and
computes the following quantities:

Exp(MinLog) Should be approximately equal to MinNum

Ln(MinNum) Should be approximately equal to MinLog

Exp(MaxLog) Should be approximately equal to MaxNum

Ln(MaxNum) Should be approximately equal to MaxLog

Fact(MaxFac)

Gamma(MaxGam) Should be computed without overflow.
LnGamma(MaxLgm)

The following results were obtained with FreeBasic 0.21b:

MachEp = 2.220446049250313e-016

MinNum = 2.225073858507202e-308

Exp(MinLog) = 2.225073858507263e-308

MinLog = -708.3964185322641

Ln(MinNum) = -708.3964185322641

MaxNum = 1.797693134862315e+308

Exp(MaxLog) = 1.797693134862273e+308

MaxLog = 709.782712893384

Ln(MaxNum) = 709.782712893384

MaxFac = 170

Fact(MaxFac) = 7.257415615308285e+306

MaxGam = 171.624376956302

Gamma(MaxGam) = 1.797693134855531e+308

MaxLgm = 2.556348e+305

LnGamma(MaxLgm) = 1.795136671459441e+308

12

Chapter 3

Elementary functions

This chapter describes the mathematical constants and elementary mathe-
matical functions available in FBMath.

3.1 Constants

The following mathematical constants are defined in fbmath.bi:

Constant Value Meaning
Pi 3.14159... π
Ln2 0.69314... ln 2
Ln10 2.30258... ln 10
LnPi 1.14472... ln π

InvLn2 1.44269... 1/ ln 2
InvLn10 0.43429... 1/ ln 10
TwoPi 6.28318... 2π
PiDiv2 1.57079... π/2
SqrtPi 1.77245...

√
π

Sqrt2Pi 2.50662...
√

2π

InvSqrt2Pi 0.39894... 1/
√

2π

LnSqrt2Pi 0.91893... ln
√

2π
Ln2PiDiv2 0.91893... (ln 2π)/2

Sqrt2 1.41421...
√

2

Sqrt2Div2 0.70710...
√

2/2

Gold 1.61803... Golden Ratio = (1 +
√

5)/2
CGold 0.38196... 2 - GOLD

In addition, the logical constants True (-1) and False (0) are defined.

13

3.2 Error handling

The function MathErr() returns the error code from the last function eval-
uation. It must be checked immediately after a function call:

Y = f(X) ’ f is one of the functions of the library

if MathErr = FOk then ...

If an error occurs, a default value is attributed to the function. The
possible error codes are the following:

Error code Value Meaning
FOk 0 No error

FDomain -1 Argument domain error
FSing -2 Function singularity

FOverflow -3 Overflow range error
FUnderflow -4 Underflow range error

3.3 Minimum and maximum

• Function Min(X, Y) returns the minimum of two real numbers X, Y .

• Function Max(X, Y) returns the maximum of two real numbers X, Y .

• Function IMin(X, Y) returns the minimum of two integer numbers
X, Y .

• Function IMax(X, Y) returns the maximum of two integer numbers
X, Y .

3.4 Rounding functions

• Function Round(X, Digit Count) will round X to Digit Count deci-
mal places. Digit Count must be between 0 and 16. The default value
is 0, so that Round(X) is equivalent to Round(X, 0).

• Function Floor(X) returns the lowest integer ≥ X

• Function Ceil(X) returns the highest integer ≤ X

14

3.5 Logarithms and exponentials

The functions Expo and Ln may be used instead of the standard functions
Exp and Log, when it is necessary to check the range of the argument. The
new function performs the required tests and calls the standard function if
the argument is within the acceptable limits (for instance, X > 0 for Ln(X));
otherwise, the function returns a default value and MathErr() will return
the appropriate error code.

Other logarithmic and exponential functions are:

Function Definition
Exp2(X) 2X

Exp10(X) 10X

Log2(X) log2X
Log10(X) log10X

LogA(X, A) logAX

3.6 Trigonometric functions

FBMath provides two additional functions:

Function Definition

Pythag(X, Y)
√
X2 + Y 2

FixAngle(Theta) Returns the angle Theta in the range [−π, π]

3.7 Hyperbolic functions

The following functions are available:

15

Function Definition

Sinh(X) 1
2
(eX − e−X)

Cosh(X) 1
2
(eX + e−X)

Tanh(X) sinhX
coshX

ASinh(X) ln(X +
√
X2 + 1)

ACosh(X) ln(X +
√
X2 − 1) X > 1

ATanh(X) 1
2

ln X+1
X−1

−1 < X < 1

In addition, the subroutine SinhCosh(X, SinhX, CoshX) computes the
hyperbolic sine and cosine simultaneously, saving the computation of one
exponential.

3.8 Demo programs

These programs are located in the demo\fmath subdirectory.

3.8.1 Function accuracy

Program testfunc.bas checks the accuracy of the elementary functions.
For each function, 20 random arguments are picked, then the function is
computed, the reciprocal function is applied to the result, and the relative
error between this last result and the original argument is computed. This
error should be around 10−15 in double precision.

3.8.2 Computation speed

Program speed.bas measures the execution time of the built-in mathemat-
ical functions, as well as the additional functions provided in FBMath. The
results are printed on the screen and saved in a text file named speed.out.

3.8.3 Function plotter

Program plotfunc.bas allows to plot a function in linear or logarithmic
coordinates. The square root function is taken as example, since its graph
becomes a straight line in log-log coordinates.

16

3.8.4 Contour plot

Program contour.bas draws a contour plot of a function of two variables. It
uses the ConRec algorithm developed by Paul Bourke (http://astronomy.
swin.edu.au/~pbourke/projection/conrec/).

The example function is:

f(x, y) = sin
√
x2 + y2 +

1

2
√

(x+ c)2 + y2

where c is a constant which may be varied to modifiy the aspect of the graph.

17

Chapter 4

Special functions

This chapter describes the special functions available in FBMath. Most of
them have been adapted from C codes in the Cephes library by S. Moshier
(http://www.moshier.net).

4.1 Factorial

Function Fact(N) returns the factorial of the non-negative integer N , also
noted N ! :

N ! = 1× 2× · · · ×N 0! = 1

The constant MaxFac defines the highest integer for which the factorial
can be computed (See chapter 2, p. 11).

4.2 Gamma function

• Function Gamma(X) returns the Gamma function, defined by:

Γ(X) =
∫ ∞

0
tX−1e−tdt

This function is related to the factorial by:

N ! = Γ(N + 1)

The Gamma function is indefinite for X = 0 and for negative integer
values of X. It is positive for X > 0. For X < 0 the Gamma function
changes its sign whenever X crosses an integer value. More precisely, if
X is an even negative integer, Γ(X) is positive on the interval]X,X+1[,
otherwise it is negative.

18

• Function SgnGamma(X) returns the sign of the Gamma function for a
given value of X.

• Function LnGamma(X) returns the natural logarithm of the Gamma
function.

• Function Stirling(X) approximates Gamma(X) with Stirling’s formula,
for X >= 30.

• Function StirLog(X) approximates LnGamma(X) with Stirling’s for-
mula, for X >= 13.

The constants MaxGam and MaxLgm define the highest values for which
the Gamma function and its logarithm, respectively, can be computed (See
chapter 2, p. 11).

• Function IGamma(A, X) returns the incomplete Gamma function, de-
fined by:

1

Γ(A)

∫ X

0
tA−1e−tdt A > 0, X > 0

• Function JGamma(A, X) returns the complement of the incomplete Gamma
function, defined by:

1

Γ(A)

∫ ∞
X

tA−1e−tdt

Although formally equivalent to 1.0 - IGamma(A, X), this function
uses specific algorithms to minimize roundoff errors.

• Function InvGamma(A, Y) returns X such that IGamma(A, X) = Y

4.3 Polygamma functions

The polygamma function of order n, denoted ψn(x), is the n-th derivative of
the logarithm of the gamma function:

ψn(x) =
dn

dxn
ln Γ(x)

The cases n = 1 and n = 2 are implemented in FBMath as DiGamma(X)

and TriGamma(X)

19

4.4 Beta function

• Function Beta(X, Y) returns the Beta function, defined by:

B(X, Y) =
∫ 1

0
tX−1(1− t)Y−1dt =

Γ(X)Γ(Y)

Γ(X + Y)

(Here B denotes the uppercase greek letter ‘Beta’ !)

• Function IBeta(A, B, X) returns the incomplete Beta function, de-
fined by:

1

B(A,B)

∫ X

0
tA−1(1− t)B−1dt A > 0, B > 0, 0 ≤ X ≤ 1

• Function InvBeta(A, B, Y) returns X such that IBeta(A, B, X) = Y

4.5 Error function

• Function Erf(X) returns the error function, defined by:

erf(X) =
2√
π

∫ X

0
exp(−t2)dt

• Function Erfc(X) returns the complement of the error function, defined
by:

erfc(X) =
2√
π

∫ ∞
X

exp(−t2)dt

4.6 Lambert’s function

Lambert’s W function is the reciprocal of the function xex. That is, if y =
W (x), then x = yey. Lambert’s function is defined for x ≥ −1/e, with
W (−1/e) = −1. When −1/e < x < 0, the function has two values; the value
W (x) > −1 defines the upper branch, the value W (x) < −1 defines the lower
branch.

The function LambertW(X, UBranch, Offset) computes Lambert’s func-
tion.

• X is the argument of the function (must be ≥ −1/e)

20

• UBranch is a boolean parameter which must be set to True for com-
puting the upper branch of the function and to False for computing
the lower branch.

• Offset is a boolean parameter indicating if X is an offset from −1/e.
In this case, W (X−1/e) will be computed (with X > 0). Using offsets
improves the accuracy of the computation if the argument is near −1/e.

The default values of UBranch and Offset are respectively True and
False, so that, for instance, LambertW(X) is equivalent to LambertW(X,

True, False)

The code for Lambert’s function has been translated from a Fortran pro-
gram written by Barry et al (http://www.netlib.org/toms/743).

4.7 Demo programs

• Programs testfact.bas, testgam.bas, testigam.bas, testerf.bas,
testbeta.bas, testibet.bas, located in the demo\fmath subdirec-
tory, check the accuracy of the functions Fact, Gamma, IGamma, Erf,
Beta and IBeta, respectively.

These programs use reference data from Numerical Recipes (http://
www.nr.com), but the reference values have been re-computed to 20 sig-
nificant digits with the Maple software (http://www.maplesoft.com)
and the Gamma values for negative arguments have been corrected.

Each program computes the values of a given function for a set of
predefined arguments and compares the results to the reference values.
Then it displays the number of correct digits found. This number
should be between 14 and 16 in double precision.

• Program testw.bas checks the accuracy of the Lambert function.

The program computes Lambert’s function for a set of pre-defined ar-
guments and compares the results with reference values. It displays
the number of exact digits found. This number should correspond with
the numeric precision used (14-16 digits in double precision).

This program has been translated from a Fortran program written by
Barry et al (http://www.netlib.org/toms/743).

21

Chapter 5

Probability distributions

This chapter describes the functions available in FBMath to compute proba-
bility distributions. Most of them are applications of the special functions
studied in chapter 4.

5.1 Binomial distribution

Binomial distribution arises when a trial has two possible outcomes: ‘failure’
or ‘success’. If the trial is repeated N times, the random variable X is the
number of successes.

• Function Binomial(N,K) returns the binomial coefficient
(
N
K

)
, which is

defined by: (
N

K

)
=

N !

K!(N −K)!
0 ≤ K ≤ N

• Function PBinom(N, P, K) returns the probability of obtaining K suc-
cesses among N repetitions, if the probability of success is P .

Prob(X = K) =

(
N

K

)
PKQN−K with Q = 1− P

• Function FBinom(N, P, K) returns the probability of obtaining at most
K successes among N repetitions, i. e. Prob(X ≤ K). This is called
the cumulative probability function and is defined by:

Prob(X ≤ K) =
K∑
k=0

(
N

k

)
P kQN−k = 1− IB(K + 1, N −K,P)

where IB denotes the incomplete Beta function.

22

The mean of the binomial distribution is µ = NP , its variance is σ2 =
NPQ. The standard deviation is therefore σ =

√
NPQ.

5.2 Poisson distribution

The Poisson distribution can be considered as the limit of the binomial dis-
tribution when N → ∞ and P → 0 while the mean µ = NP remains small
(say N ≥ 30, P ≤ 0.1, NP ≤ 10)

• Function PPoisson(Mu, K) returns the probability of observing the
value K if the mean is µ. It is defined by:

Prob(X = K) = e−µ
µK

K!

• Function FPoisson(Mu, K) gives the cumulative probability function,
defined by:

Prob(X ≤ K) =
K∑
k=0

e−µ
µk

k!
= 1− IΓ(K + 1, µ)

where IΓ denotes the incomplete Gamma function.

5.3 Standard normal distribution

The normal distribution (a. k. a. Gauss distribution or Laplace-Gauss
distribution) corresponds to the classical bell-shaped curve. It may also be
considered as a limit of the binomial distribution when N is sufficiently ‘large’
while P and Q are sufficiently different from 0 or 1. (say N ≥ 30, NP ≥ 5,
NQ ≥ 5).

The normal distribution with mean µ and standard deviation σ is denoted
N (µ, σ) with µ = NP and σ =

√
NPQ. The special case N (0, 1) is called

the standard normal distribution.

• Function DNorm(X) returns the probability density of the standard nor-
mal distribution, defined by:

f(X) =
1√
2π

exp

(
−X

2

2

)

The graph of this function is the bell-shaped curve.

23

• Function FNorm(X) returns the cumulative probability function:

Φ(X) = Prob(U ≤ X) =
∫ X

−∞
f(x)dx =

1

2

[
1 + erf

(
X

√
2

2

)]

where U denotes the standard normal variable and erf the error func-
tion.

• Function PNorm(X) returns the probability that the standard normal
variable exceeds X in absolute value, i. e. Prob(|U | > X).

• Function InvNorm(P) returns the value X such that Φ(X) = P .

5.4 Student’s distribution

Student’s distribution is widely used in Statistics, for instance to estimate
the mean of a population from a sample taken from this population. The
distribution depends on an integer parameter ν called the number of degrees
of freedom (in the mean estimation problem, ν = n − 1 where n is the
number of individuals in the sample). When ν is large (say > 30) the Student
distribution is approximately equal to the standard normal distribution.

• Function DStudent(Nu, X) returns the probability density of the Stu-
dent distribution with Nu degrees of freedom, defined by:

fν(X) =
1

ν1/2 B
(
ν
2
, 1

2

) · (1 +
X2

ν

)− ν+1
2

where B denotes the Beta function.

• Function FStudent(Nu, X) returns the cumulative probability func-
tion:

Φν(X) = Prob(t ≤ X) =
∫ X

−∞
fν(x)dx =

{
I/2 ifX ≤ 0
1− I/2 ifX > 0

where t denotes the Student variable and I = IB
(
ν
2
, 1

2
, ν
ν+X2

)
• Function PStudent(Nu, X) returns the probability that the Student

variable t exceeds X in absolute value, i. e. Prob(|t| > X).

• Function InvStudent(Nu, P) returns the value X such that Φν(X) =
P .

24

5.5 Khi-2 distribution

The χ2 distribution is a special case of the Gamma distribution (see below).
It depends on an integer parameter ν which is the number of degrees of
freedom.

• Function DKhi2(Nu, X) returns the probability density of the χ2 dis-
tribution with Nu degrees of freedom, defined by:

fν(X) =
1

2
ν
2 Γ

(
ν
2

) ·X ν
2
−1 · exp

(
−X

2

)
(X > 0)

• Function FKhi2(Nu, X) returns the cumulative probability function:

Φν(X) = Prob(χ2 ≤ X) =
∫ X

0
fν(x)dx = IΓ

(
ν

2
,
X

2

)
where IΓ denotes the incomplete Gamma function.

• Function PKhi2(Nu, X) returns the probability that the χ2 variable
exceeds X, i. e. Prob(χ2 > X).

• Function InvKhi2(Nu, P) returns the value X such that Φν(X) = P .

5.6 Snedecor’s distribution

The Snedecor (or Fisher-Snedecor) distribution is used mainly to compare
two variances. It depends on two integer parameters ν1 and ν2 which are the
degrees of freedom associated with the variances.

• Function DSnedecor(Nu1, Nu2, X) returns the probability density of
the Snedecor distribution with Nu1 and Nu2 degrees of freedom, defined
by:

fν1,ν2(X) =
1

B
(
ν1
2
, ν2

2

) ·(ν1

ν2

) ν1
2

·X
ν1
2
−1 ·

(
1 +

ν1

ν2

X
)− ν1+ν2

2

(X > 0)

• Function FSnedecor(Nu1, Nu2, X) returns the cumulative probability
function:

Φν1,ν2(X) = Prob(F ≤ X) =
∫ X

0
fν1,ν2(x)dx = 1−IB

(
ν2

2
,
ν1

2
,

ν2

ν2 + ν1X

)
where F denotes the Snedecor variable.

25

• Function PSnedecor(Nu1, Nu2, X) returns the probability that the
Snedecor variable F exceeds X, i. e. Prob(F > X).

• Function InvSnedecor(Nu1, Nu2, P) returns the value X such that
Φν1,ν2(X) = P .

5.7 Exponential distribution

The exponential distribution is used in many applications (radioactivity,
chemical kinetics...). It depends on a positive real parameter A.

• Function DExpo(A, X) returns the probability density of the exponen-
tial distribution with parameter A, defined by:

fA(X) = A exp(−AX) (X > 0)

• Function FExpo(A, X) returns the cumulative probability function:

ΦA(X) =
∫ X

0
fA(x)dx = 1− exp(−AX)

5.8 Beta distribution

The Beta distribution is often used to describe the distribution of a random
variable defined on the unit interval [0, 1]. It depends on two positive real
parameters A and B.

• Function DBeta(A, B, X) returns the probability density of the Beta
distribution with parameters A and B, defined by:

fA,B(X) =
1

B(A,B)
·XA−1 · (1−X)B−1 (0 ≤ X ≤ 1)

• Function FBeta(A, B, X) returns the cumulative probability function:

ΦA,B(X) =
∫ X

0
fA,B(x)dx = IB(A,B,X)

• Function InvBeta(A, B, P) returns the value X such that ΦA,B(X) =
P .

26

5.9 Gamma distribution

The Gamma distribution is often used to describe the distribution of a ran-
dom variable defined on the positive real axis. It depends on two positive
real parameters A and B.

• Function DGamma(A, B, X) returns the probability density of the Gamma
distribution with parameters A and B, defined by:

fA,B(X) =
BA

Γ(A)
·XA−1 · exp(−BX) (X > 0)

• Function FGamma(A, B, X) returns the cumulative probability func-
tion:

ΦA,B(X) =
∫ X

0
fA,B(x)dx = IΓ(A,BX)

The χ2 distribution is a special case of the Gamma distribution, with
A = ν/2 and B = 1/2.

5.10 Demo programs

• Program binom1.bas computes the binomial coefficient Binomial(N,

K) for several values of N and K and compares the results with reference
values.

• Program binom2.bas compares the cumulative probabilities of the bi-
nomial distribution, estimated by function FBinom, with the values
obtained by summing up the individual probabilities.

27

Chapter 6

Matrices and linear equations

This chapter describes the procedures and functions available in FBMath to
perform vector and matrix operations, and to solve systems of linear equa-
tions.

6.1 Programming conventions

All subroutines dealing with arrays in FBMath apply the following conven-
tions:

• Unless otherwise noted, the FBMath subroutines use arrays of type
DOUBLE. For instance:

DIM AS DOUBLE V(1 TO 10) ’ For a vector

DIM AS DOUBLE A(1 TO 10, 1 TO 10) ’ For a matrix

• Arrays may be static or dynamic.

• The subroutines do not allocate the arrays present in their parameter
lists. These allocations must therefore be performed by the main pro-
gram, by means of the appropriate DIM statements, before calling the
subroutines.

• The array dimensions are not passed to the subroutines; instead they
are obtained inside the subroutines by means of the LBOUND and UBOUND

functions. So, any array which appear in the parameter list must have
its exact dimensions before calling the subroutine.

28

6.2 Error codes

The following error codes are defined in the include file fbmath.bi:

Error code Value Meaning
MatOk 0 No error

MatNonConv -1 Non-convergence
MatSing -2 Quasi-singular matrix

MatErrDim -3 Non-compatible dimensions
MatNotPD -4 Matrix not positive-definite

6.3 Gauss-Jordan elimination

If C(n×n) and B(n×m) are two real matrices, the Gauss-Jordan elimination
can compute the inverse matrix C−1, the solution X to the system of linear
equations CX = B, and the determinant of C.

This procedure is implemented as subroutine GaussJordan(A(), Det)

where:

• On input, A is the global matrix [C|B], which means that:

– the first n columns of A contain the matrix C

– the other columns of A contain the matrix B

• On output, A is transformed into the global matrix [C−1|X], which
means that:

– the first n columns of A contain the inverse matrix C−1

– the other columns of A contain the solution matrix X

• Det is the determinant of C

Notes:

• B may be a vector, in this case m = 1 and X is also a vector.

• The original matrix A is overwritten by the subroutine. If necessary,
the calling program must save a copy of it.

29

Subroutine LinEq(A(), B(), Det) is a simplified version of the Gauss-
Jordan procedure where A is a square matrix and B is a vector. This subrou-
tine solves the system AX = B. On output, A contains the inverse matrix
and B contains the solution vector.

After a call to GaussJordan or LinEq, function MathErr will return the
error code:

• MatOk if there is no error.

• MatSing if A is singular (or quasi-singular)

• MatErrDim if the matrices have incompatible dimensions

6.4 LU decomposition

The LU decomposition algorithm factors the square matrix A as a product
LU, where L is a lower triangular matrix (with unit diagonal terms) and U
is an upper triangular matrix.

The linear system AX = B is then solved by:

LY = B (6.1)

UX = Y (6.2)

System 6.1 is solved for vector Y, then system 6.2 is solved for vector X.
The solutions are simplified by the triangular nature of the matrices.

FBMath provides the following subroutines:

• subroutine LU Decomp(A()) performs the LU decomposition of matrix
A.

The matrices L and U are stored in A, which is therefore destroyed.

After a call to LU Decomp, the function MathErr will return one of the
following error codes:

– MatOk if no error

– MatErrDim if A is not square or if its lower bounds in the two
dimensions are different (i. e. LBOUND(A, 1) <> LBOUND(A, 2))

– MatSing if A is quasi-singular

• subroutine LU Solve(A(), B(), X()) solves the system AX = B, where
X and B are real vectors, once the matrix A has been transformed by
LU Decomp.

30

6.5 QR decomposition

This method factors a matrix A as a product of an orthogonal matrix Q by
an upper triangular matrix R:

A = QR

The linear system AX = B then becomes:

QRX = B

Denoting the transpose of Q by Q′ and left-multiplying by this transpose,
one obtains:

Q′QRX = Q′B

or:
RX = Q′B

since the transpose of an orthogonal matrix is equal to its inverse.

The last system is solved by making advantage of the triangular nature
of matrix R.

Note : The QR decomposition may be applied to a rectangular matrix
n × m (with n > m). In this case, Q has dimensions n × m and R has
dimensions m×m. For a linear system AX = B, the solution minimizes the
norm of the vector AX - B. It is called the least squares solution.

FBMath provides the following subroutines:

• subroutine QR Decomp(A(), R()) performs the QR decomposition on
the input matrix A.

The matrix Q is stored in A, which is therefore destroyed.

After a call to QR Decomp, the function MathErr will return one of the
following error codes:

– MatOk if no error

– MatErrDim if n > m or if A has different lower bounds in the two
dimensions (i. e. LBOUND(A, 1) <> LBOUND(A, 2))

– MatSing if A is quasi-singular

• subroutine QR Solve(Q(), R(), B(), X()) solves the system QRX =

B.

31

6.6 Singular value decomposition

Singular value decomposition (SVD) factors a matrix A as a product:

A = USV′

where U et V are orthogonal matrices. S is a diagonal matrix. Its diagonal
terms Sii are all ≥ 0 and are called the singular values of A. The rank of A
is equal to the number of non-null singular values.

• If A is a regular matrix, all Sii are > 0. The inverse matrix is given
by:

A−1 = (USV′)−1 = (V′)−1S−1U−1 = V × diag(1/Sii)×U′

since the inverse of an orthogonal matrix is equal to its transpose.

So the solution of the system AX = B is given by X = A−1B

• If A is a singular matrix, some Sii are null. However, the previous
expressions remain valid provided that, for each null singular value,
the term 1/Sii is replaced by zero.

It may be shown that the solution so calculated corresponds:

– in the case of an under-determined system, to the vector X having
the least norm.

– in the case of an impossible system, to the least-squares solution.

Note : Just like the QR decomposition, the SVD may be applied to a
rectangular matrix n × m (with n > m). In this case, U has dimensions
n×m, S and V have dimensions m×m. For a linear system AX = B, the
SVD method gives the least squares solution.

FBMath provides the following subroutines:

• subroutine SV Decomp(A(), S(), V()) performs the singular value de-
composition on the input matrix A.

The matrix U (such that A = USV’) is stored in A, which is therefore
destroyed.

After a call to SV Decomp, the function MathErr will return one of the
following error codes:

32

– MatOk if no error

– MatErrDim if n > m or if A has different lower bounds in the two
dimensions (i. e. LBOUND(A, 1) <> LBOUND(A, 2))

– MatNonConv if the iterative process does not converge

• procedure SV SetZero(S(), Tol) sets to zero the singular values Si
which are lower than a fraction Tol of the highest singular value. This
procedure may be used when solving a system with a near-singular
matrix.

• procedure SV Solve(U(), S(), V(), B(), X()) solves the system USV’X

= B.

• procedure SV Approx(U(), S(), V(), A()) approximates a matrix A

by the product USV’, after the lowest singular values have been set to
zero by SV SetZero.

6.7 Cholesky decomposition

The symmetric matrix A is said to be positive definite if, for any vector x,
the product x>Ax is positive.

For such matrices, it is possible to find a lower triangular matrix L such
that:

A = LL>

L can be viewed as a kind of ‘square root’ of A.

Subroutine Cholesky(A(), L()) performs the Cholesky decomposition
on A. After a call to the subroutine, function MathErr returns the error code:

• MatOk if there is no error.

• MatNotPD if A is not positive definite.

6.8 Eigenvalues and eigenvectors

6.8.1 Definitions

A square matrix A is said to have an eigenvalue λ, associated to an eigen-
vector V, if and only if:

A ·V = λ ·V

33

A symmetric matrix of size n has n distinct real eigenvalues and n or-
thogonal eigenvectors.

A non-symmetric matrix of size n has also n eigenvalues but some of them
may be complex, and some may be equal (they are said to be degenerate).

6.8.2 Symmetric matrices

• Subroutine EigenSym(A(), V(), Lambda()) computes the eigenval-
ues and eigenvectors of the real symmetric positive semi-definite matrix
A by singular value decomposition.

The eigenvectors are returned in matrix V; the eigenvalues are returned
in vector Lambda.

The eigenvectors are stored along the columns of V. They are normal-
ized, with their first component always positive.

The error codes are those of the SV Decomp procedure.

• Subroutine Jacobi(A(), MaxIter, Tol, V(), Lambda()) computes
the eigenvalues and eigenvectors of the real symmetric matrix A, using
the iterative method of Jacobi. The eigenvalues and eigenvectors are
ordered and normalized as with the previous procedure.

MaxIter is the maximum number of iterations, Tol is the required
precision on the eigenvalues.

After a call to Jacobi, function MathErr returns one of two error codes:

– MatOk if all goes well.

– MatNonConv if the iterative process does not converge.

These procedures destroy the original matrix A.

6.8.3 General square matrices

• Subroutine EigenVals(A(), Lambda()) computes the eigenvalues of
the real square matrix A.

Eigenvalues are stored in the complex vector Lambda. The real and
imaginary parts of the ith eigenvalue are stored in Lambda(i).X and
Lambda(i).Y, respectively. The eigenvalues are unordered, except that

34

complex conjugate pairs appear consecutively with the value having
the positive imaginary part first.

Function MathErr returns the following error codes:

• 0 if no error

• (-i) if an error occurred during the determination of the ith eigen-
value. The eigenvalues should be correct for the indices > i.

This procedure destroys the original matrix A.

• Subroutine EigenVect(A(), Lambda(), V()) computes the eigenval-
ues and eigenvectors of the real square matrix A.

Eigenvalues are stored in the complex vector Lambda, just like with
EigenVals.

Eigenvectors are stored along the columns of the real matrix V.

If the ith eigenvalue is real, the ith column of V contains its eigenvector.
If the ith eigenvalue is complex with positive imaginary part, the ith

and (i+1)th columns of V contain the real and imaginary parts of its
eigenvector. The eigenvectors are unnormalized.

Function MathErr returns the same error codes than EigenVals. If the
error code is not null, none of the eigenvectors has been found.

This procedure destroys the original matrix A.

6.9 Demo programs

These programs are located in the demo\matrices subdirectory.

6.9.1 Determinant and inverse of a square matrix

Program detinv.bas computes the determinant and inverse of a square ma-
trix. The inverse matrix is re-inverted and the result (which should be equal
to the original matrix) is printed.

The example matrix is:

A =

1 2 0 −1
−1 4 3 −0.5

2 2 1 −3
0 0 3 −4

35

The inverse is:

A−1 =

−41
21

4
21

11
7
−5

7

16
21

1
21
− 5

14
1
14

−40
21

8
21

8
7
−3

7

−10
7

2
7

6
7
−4

7

or, in approximate form:

A−1 ≈

−1.9523 0.1905 1.5714 −0.7143

0.7619 0.0476 −0.3571 0.0714
−1.9048 0.3810 1.1429 −0.4286
−1.4286 0.2857 0.8571 −0.5714

The determinant is -21.

6.9.2 Hilbert matrices

Program hilbert.bas tests the Gauss-Jordan method by solving a series of
Hilbert systems of increasing order. Such systems have matrices of the form:

A =

1 1
2

1
3

1
4
· · · 1

N

1
2

1
3

1
4

1
5
· · · 1

N+1

1
3

1
4

1
5

1
6
· · · 1

N+2

1
4

1
5

1
6

1
7
· · · 1

N+3
...

...
1
N

1
N+1

1
N+2

1
N+3

· · · 1
2N−1

Each element of the constant vector is equal to the sum of the terms in

the corresponding line of the matrix :

Bi =
N∑
j=1

Aij

The solution of such a system is [1, 1, 1, · · · 1]

The determinant of the Hilbert matrix tends towards zero when the order
increases. The program stops when the determinant becomes too low with
respect to the numerical precision of the floating point numbers. This occurs
at order 13 in double precision.

36

6.9.3 Gauss-Jordan method: single constant vector

Program lineq1.bas solves the linear system AX = B. After a call to
LinEq, A contains the inverse matrix and B contains the solution vector.

The example system matrix is:

A =

2 1 5 −8
7 6 2 2
−1 −3 −10 4

2 2 2 1

The constant vector is:

B =

0

17
−10

7

The solution vector is:

X =

1
1
1
1

The determinant is -135

6.9.4 Gauss-Jordan method: multiple constant vectors

Program lineqm.bas solves a series of linear systems with the same system
matrix and several constant vectors. The system matrix is stored in the
first n columns of matrix A; the constant vectors are stored in the following
columns. After a call to GaussJordan, the first n columns of A contain the
inverse matrix and the following columns contain the solution vectors.

The example system matrix from the previous program is used. The
matrix of constant vectors is:

0 −15 14 −13 5
17 50 1 84 30
−10 −5 −12 −51 −15

7 17 1 37 10

The solution matrix is:

1 2 1 4 0
1 5 −1 5 5
1 0 1 6 0
1 3 −1 7 0

37

6.9.5 LU, QR and SV decompositions

The demo programs test lu.bas, test qr.bas and test svd.bas solve the
linear system used by lineq1.bas (paragraph 6.9.3) with the LU, QR, and
singular value decompositions, respectively.

6.9.6 Cholesky decomposition

Program cholesk.bas performs the Cholesky decomposition of a positive
definite symmetric matrix. The matrix is decomposed then the program
computes the product LL> which must give the original matrix.

The example matrix is:

A =

 60 30 20
30 20 15
20 15 12

Its Cholesky factor is:

L =

 2
√

15 0 0√
15
√

5 0
2
3

√
15
√

5 1
3

√
3

or, in approximate form:

L ≈

 7.745967 0 0
3.872983 2.236068 0
2.581989 2.236068 0.577350

6.9.7 Eigenvalues of a symmetric matrix

Program eigensym.bas computes the eigenvalues and eigenvectors of Hilbert
matrices (see program hilbert.bas) by the Jacobi or SVD method. These
matrices are very ill-conditioned, which can be seen from the high ratio be-
tween the highest and lowest eigenvalues (the condition number).

6.9.8 Eigenvalues of a general square matrix

Program eigenval.bas computes the eigenvalues of a general square matrix.

The example matrix from the detinv.bas program is used. It has two
real and two complex (conjugate) eigenvalues:

38

-1.075319 + 1.709050 * i

-1.075319 - 1.709050 * i

-1.000000

5.150639

6.9.9 Eigenvalues and eigenvectors of a general square
matrix

Program eigenvec.bas computes both the eigenvalues and eigenvectors of
a general square matrix. The same example matrix is used.

The eigenvectors are stored columnwise in a matrix V(1..N, 1..N). In
order to retrieve the eigenvectors associated with complex eigenvalues, the
program takes into account the following properties:

• Complex conjugate pairs of eigenvalues are stored consecutively in vec-
tor Lambda, with the value having the positive imaginary part first.

• If the ith eigenvalue is complex with positive imaginary part, the ith

and (i+1)th columns of matrix V contain the real and imaginary parts
of its eigenvector.

• Eigenvectors associated with complex conjugate eigenvalues are them-
selves complex conjugate.

Hence the algorithm:

IF Lambda(I).Y = 0 THEN

’ Eigenvector is in column I of V

ELSEIF Lambda(I).Y > 0 THEN

’ Real and imag. parts of eigenvector are in columns I and (I+1)

’ For component K: real part = V(K,I), imag. part = V(K,I+1)

ELSE

’ Real and imag. parts of eigenvector are in columns (I-1) and I

’ For component K: real part = V(K,I-1), imag. part = - V(K,I)

END IF

The results obtained with the example matrix are the following:

Eigenvalue:

-1.075319 + 1.709050 * i

39

Eigenvector:

-0.220224 + 0.394848 * i

0.078289 - 0.303345 * i

0.029348 + 0.787594 * i

0.374358 + 0.589119 * i

Eigenvalue:

-1.075319 - 1.709050 * i

Eigenvector:

-0.220224 - 0.394848 * i

0.078289 + 0.303345 * i

0.029348 - 0.787594 * i

0.374358 - 0.589119 * i

Eigenvalue:

-1.000000

Eigenvector:

2.605054

-1.042021

3.126065

3.126065

Eigenvalue:

5.150638

Eigenvector:

0.345194

0.788801

0.441744

0.144823

40

Chapter 7

Function minimization

This chapter describes the procedures and functions available in FBMath to
minimize functions of one or several variables. Only deterministic optimizers
are considered here. Stochastic optimization will be studied in a next chapter.

7.1 Functions of one variable

Let Func be a function of a real variable X. In FBMath such a function is
declared as:

FUNCTION Func(X AS DOUBLE) AS DOUBLE

The problem is to find the real Xmin for which Func(X) is minimal.

Subroutine GoldSearch(Func, A, B, MaxIter, Tol, Xmin, Ymin) per-
forms the minimization by the ‘golden search’ method. This means that, at
each iteration, the number Xmin is ‘bracketed’ by a triplet (A, B, C) such
that:

• A < B < C

• A,B,C are within the golden mean φ, i.e.

B − A
C −B

=
C − A
B − A

= φ =
1 +
√

5

2
≈ 1.618

• Func(B) < Func(A) and Func(B) < Func(C).

The user must provide two numbers A and B which define the ‘unit vector’
on the X axis. The number C is found by the program itself. It is not
necessary that the interval [A, B] contains the minimum.

The user must also provide:

41

• the maximum number of iterations MaxIter

• the tolerance Tol with which the minimum must be located. This value
should not be higher than the square root of the machine precision
(MachEp1/2 ≈ 1.5× 10−8 in double precision)

The subroutine returns the coordinates (Xmin, Ymin) of the minimum.

After a call to GoldSearch, function MathErr() will return one of two
error codes:

• OptOk if no error occurred

• OptNonConv (non-convergence) if the number of iterations exceeds the
maximum value MaxIter

The determination of the bracketing triplet A, B, C is performed within
GoldSearch by a call to a subroutine MinBrack. This subroutine may be
called independently. Its syntax is:

MinBrack(Func, A, B, C, Fa, Fb, Fc)

The user must provide the first two numbers A and B. The number C

is found by the subroutine. The corresponding values of the function are
returned in Fa, Fb, Fc.

7.2 Functions of several variables

Let f be a function of a real vector x such that x = [x1, x2, · · ·]. In FBMath

such a function is declared as:

FUNCTION Func(X() AS DOUBLE) AS DOUBLE

The problem is to find the vector X() for which Func(X()) is minimal.

7.2.1 Minimization along a line

If x0 is a starting point and δx is a constant vector, minimizing f from x0

along the direction specified by δx is equivalent to finding the number r such
that g(r) = f(x0 + r · δx) is minimal.

Subroutine LinMin(Func, X(), DeltaX(), R, MaxIter, Tol, Fmin) will
minimize function Func from X() in the direction specified by DeltaX(). R

42

is the initial step in that direction, expressed as a fraction of the norm of
DeltaX(). If R is set to 0 or a negative value, the subroutine will use the
default value R = 1. The user must also provide the maximum number of
iterations MaxIter and the tolerance Tol, as for subroutine GoldSearch.

On output, LinMin returns:

• the coordinates of the minimum in X()

• the step corresponding to the minimum in R

• the function value at the minimum in Fmin

After a call to LinMin, function MathErr() will return one of the error
codes OptOk or OptNonConv, as with GoldSearch.

7.2.2 Newton-Raphson method

The Newton-Raphson method starts with an approximation x0 for the coor-
dinates of the minimum and generates a new approximation x by using the
second-order Taylor series expansion of function f around x0:

f(x) = f(x0) + (x− x0)> · g(x0) +
1

2
(x− x0)> ·H(x0) · (x− x0) (7.1)

g denotes the gradient vector (vector of first partial derivatives) and H de-
notes the hessian matrix (matrix of second partial derivatives). For instance,
for a fonction of two variables f(x1, x2) :

g(x0) =

∂f
∂x1

(x0
1, x

0
2)

∂f
∂x2

(x0
1, x

0
2)

H(x0) =

∂2f
∂x21

(x0
1, x

0
2) ∂2f

∂x1∂x2
(x0

1, x
0
2)

∂2f
∂x2∂x1

(x0
1, x

0
2) ∂2f

∂x22
(x0

1, x
0
2)

By differentiating eq. (1) we obtain the gradient of f at point x:

g(x) = g(x0) + H(x0) · (x− x0) (7.2)

If x is sufficiently close to the minimum, g(x) ≈ 0 so:

x = x0 −H−1(x0) · g(x0)

43

In practice, it is better to determine the step k which minimizes the
function in the direction specified by −H−1(x0) · g(x0):

x = x0 − k ·H−1(x0) · g(x0)

The determination of k is performed by line minimization.

Subroutine Newton(Func, HessGrad, X(), MaxIter, Tol, Fmin, G(),

Hinv(), Det) minimizes function Func by the Newton-Raphson method.

The user must provide a subroutine HessGrad to compute the gradient
G() and the hessian H() of the function at point X(). This subroutine is
declared as:

SUB HessGrad(X() AS DOUBLE, G() AS DOUBLE, H() AS DOUBLE)

MaxIter and Tol have their usual meaning.

On output, Newton returns:

• the coordinates of the minimum in X()

• the function value at the minimum in Fmin

• the gradient at the minimum in G() (should be near 0)

• the inverse hessian matrix at the minimum in H()

• the determinant of the hessian matrix at the minimum in Det

After a call to Newton, function MathErr() will return one of three error
codes:

• OptOk if no error occurred

• OptNonConv (non-convergence) if the number of iterations exceeds the
maximum value MaxIter

• OptSing if the hessian matrix is quasi-singular

44

7.2.3 Approximate gradient and hessian

Although it is recommended to compute the gradient and hessian from an-
alytical derivatives, approximate values may be found using finite difference
approximations:

∂f

∂xi
(x) ≈ f(xi + hi)− f(xi − hi)

2hi

∂2f

∂x2
i

(x) ≈ f(xi + hi) + f(xi − hi)− 2f(xi)

h2
i

∂2f

∂xi∂xj
(x) ≈ f(xi + hi, xj + hj)− f(xi + hi, xj)− f(xi, xj + hj) + f(xi, xj)

hihj

The increment hi is such that hi = η | xi | where η is a constant which
should not be less than the cube root of the machine epsilon (MachEp1/3 ≈
6.06× 10−6 in double precision).

Subroutine NumHessGrad(Func, X(), Eta, G(), H()) performs these
computations for function Func at point X() using the relative increment
Eta. The approximate gradient and hessian are returned in G() and H().

To use Newton with numerical derivatives, you must imbed NumHessGrad

into another subroutine (e. g. HessGrad) which will be passed to Newton,
for instance:

SUB HessGrad (X() AS DOUBLE, G() AS DOUBLE, H() AS DOUBLE)

CONST Eta = 1D-6

NumHessGrad @Func, X(), Eta, G(), H()

END SUB

where function Func is defined in the main program (see demo program
testnewt.bas for an example).

It is not possible to pass NumHessGrad directly to Newton because the
parameter list of NumHessGrad do not match the parameter list of HessGrad
as defined in Newton’s declaration.

7.2.4 Marquardt method

This method is a variant of the Newton-Raphson method, in which each
diagonal term of the hessian matrix is multiplied by a scalar equal to (1+λ),
where λ is the Marquardt parameter. This parameter is initialized at some

45

small value (e.g. 10−2) at the beginning of the iterations, then it is decreased
by a factor 10 if the iteration leads to a decrease of the function, otherwise it
is increased by a factor 10. This procedure usually improves the convergence
of the Newton-Raphson method.

If the method converges, λ should reach a very small value, so that the
Marquardt and Newton-Raphson algorithms should produce identical results
for the inverse hessian matrix. However, this is not guaranteed, so that, if
a precise inverse hessian is required, it may be useful to perform a single
iteration of the Newton-Raphson method once Marquardt’s algorithm has
successfully terminated (see demo program testmarq.bas).

This procedure is implemented as: Marquardt(Func, HessGrad X(),

MaxIter, Tol, Fmin, G(), Hinv(), Det)

It is used like Newton, except that an additional error code, OptBigLambda,
may be returned by MathErr if the Marquard parameter increases beyond a
predefined value (103 in this implementation).

7.2.5 BFGS method

The BFGS (Broyden-Fletcher-Goldfarb-Shanno) method is another variant
of the Newton method in which the hessian matrix does not need to be
computed explicitly. It is said a quasi-Newton method.

The BFGS algorithm uses the following formula to construct the inverse
hessian matrix iteratively:

H−1
i+1 = H−1

i +
δx · δx>

δx> · δg
− (H−1

i · δg) · (H−1
i · δg)>

δg> ·H−1
i · δg

+ (δg> ·H−1
i · δg) · u · u>

with:

δx = xi+1 − xi δg = g(xi+1)− g(xi) u =
δx

δx> · δg
− H−1

i · δg
δg> ·H−1

i · δg

The algorithm is usually started with the identity matrix (H−1
0 = I).

This procedure is implemented as: BFGS(Func, Gradient, X(), MaxIter,

Tol, Fmin, G(), Hinv())

The user must provide a subroutine Gradient to compute the gradient
G() of the function at point X(). This subroutine is declared as:

SUB Gradient (X() AS DOUBLE, G() AS DOUBLE)

The other parameters have the same meaning than in Newton.

46

7.2.6 Approximate gradient

Subroutine NumGrad(Func, X(), Eta, G()) computes the gradient of func-
tion Func using finite difference approximations. Eta is the relative increment
used to compute derivatives. It should not be less than the square root of
the machine epsilon (about 1.5× 10−8).

You can use NumGrad with BFGS by defining a subroutine such that:

SUB Gradient (X() AS DOUBLE, G() AS DOUBLE)

CONST Eta = 1D-6

NumGrad @Func, X(), Eta, G()

END SUB

(see demo program testbfgs.bas for an example).

As usual, it is recommended to use analytical derivatives whenever pos-
sible.

7.2.7 Simplex method

Unlike previous methods, the simplex method of Nelder and Mead does not
use derivatives to locate the minimum. Instead it constructs a geometrical
figure (the ‘simplex’) having (n+ 1) vertices, if n is the number of variables.
For instance, in the two-dimensional space (n = 2), the simplex would be
a triangle. Depending on the function values at the vertices, the simplex is
reduced or expanded until it comes close to the minimum.

This method is implemented as: Simplex(Func, X(), MaxIter, Tol,

Fmin), where the parameters have their usual meaning.

7.3 Demo programs

These programs are located in the demo\optim subdirectory.

7.3.1 Function of one variable

Program minfunc.bas performs the golden search minimization on the func-
tion:

f(x) = e−2x − e−x

The minimum is at (ln 2,−1/4).

The minimum found by GoldSearch is compared with the true minimum.

47

7.3.2 Minimization along a line

Program minline.bas applies line minimization to the function of 3 variables
(taken from the Numerical Recipes example book) :

f(x1, x2, x3) = (x1 − 1)2 + (x2 − 1)2 + (x3 − 1)2

The minimum is f(1, 1, 1) = 0, i. e. for a step r = 1 from x = [0, 0, 0] in
the direction δx = [1, 1, 1].

The program tries a series of directions:

δx =
[√

2 cos
(
i
π

20

)
,
√

2 sin
(
i
π

20

)
, 1
]

i = 1..10

For each pass, the location of the minimum, and the value of the function
at the minimum, are printed. The true minimum is found at i = 5.

7.3.3 Newton-Raphson method

Program testnewt.bas uses the Newton-Raphson method to minimize Rosen-
brock’s function (H. Rosenbrock, Comput. J., 1960, 3, 175):

f(x, y) = 100(y − x2)2 + (1− x)2

for which the gradient and hessian are:

g(x, y) =

[
−400(y − x2)x− 2 + 2x

200y − 200x2

]

H(x, y) =

[
1200x2 − 400y + 2 −400x

−400x 200

]
and the determinant of the hessian is:

det H(x, y) = 80000(x2 − y) + 400

The minimum is f(1, 1) = 0, where:

g(1, 1) =

[
0
0

]

H−1(1, 1) =

[
1
2

1
1 401

200

]

det H(1, 1) = 400

In the demo program, the gradient and hessian are computed analytically.
You can compare with the numerical computations using NumHessGrad by
commenting off the relevant subroutine in the program.

48

7.3.4 Approximate gradient and hessian

Program testnum.bas computes the gradient and hessian of Rosenbrock’s
function numerically, at a given point, using subroutine NumHessGrad.

7.3.5 Other programs

Programs testmarq.bas, testbfgs.bas and testsimp.bas minimize Rosen-
brock’s function with the Marquardt, BFGS and Simplex methods, respec-
tively.

49

Chapter 8

Nonlinear equations

This chapter describes the procedures available in FBMath to solve nonlinear
equations in one or several variables. Only general methods are considered
here. Polynomial equations will be studied in the next chapter.

8.1 Equations in one variable

The goal is to solve the nonlinear equation f(x) = 0, or, in other terms, find
a root of function f .

8.1.1 Bisection method

Subroutine Bisect(Func, X, Y, MaxIter, Tol, F) finds a root of func-
tion Func by the bisection method. At each iteration, the root is bounded by
two numbers (X, Y) such that the function has opposite signs. Then, a new
approximation to the root is generated by taking the mean of these numbers.

The function Func must be declared as:

FUNCTION Func(X AS DOUBLE) AS DOUBLE

The user must provide initial values for X and Y. It is not necessary that
the interval [X, Y] contains the root.

The user must also provide:

• the maximum number of iterations MaxIter

• the tolerance Tol with which the root must be located.

50

The subroutine returns the refined values of X and Y and the function
value Func(X) in F.

After a call to Bisect, function MathErr() will return one of two error
codes:

• OptOk if no error occurred

• OptNonConv (non-convergence) if the number of iterations exceeds the
maximum value MaxIter

If the starting interval [X, Y] does not contain the root, Bisect will
expand it by calling a subroutine RootBrack. This subroutine may be called
independently. Its syntax is:

RootBrack(Func, X, Y, FX, FY)

The user must provide initial values for the two numbers X and Y, which
will be refined by the subroutine. The corresponding function values are
returned in FX and FY.

8.1.2 Secant method

The secant method also starts with two approximations x and y and generates
a new approximation z from the formula:

z =
xf(y)− yf(x)

f(y)− f(x)

z is the intersection of the Ox axis with the line connecting the points
(x, f(x)) and (y, f(y)), i. e. the secant.

This method is implemented as:

Secant(Func, X, Y, MaxIter, Tol, F)

The parameters and error codes are the same than in Bisect. Here too,
it is not necessary that the interval [X, Y] contains the root.

8.1.3 Newton-Raphson method

The Newton-Raphson method starts with an approximate root x0 and gener-
ates a new approximation x by using the first-order Taylor series expansion
of function f around x0:

f(x) ≈ f(x0) + f ′(x0) · (x− x0)

51

If x is sufficiently close to the root, f(x) ≈ 0 so:

x = x0 − f(x0)

f ′(x0)

This method is implemented as:

NewtEq(Func, Deriv, X, MaxIter, Tol, F)

where Func and Deriv are the procedures which compute the function
and its derivative, respectively (they have the same syntax). The user must
provide the initial approximation X.

After a call to NewtEq, function MathErr() will return one of three error
codes:

• OptOk if no error occurred

• OptNonConv (non-convergence) if the number of iterations exceeds the
maximum value MaxIter

• OptSing if the derivative becomes zero

8.2 Equations in several variables

The goal is to solve a system of n nonlinear equations in n unknowns x1, x2, · · ·xn:

f1(x1, x2, · · ·xn) = 0
f2(x1, x2, · · ·xn) = 0
· · · · · · · · · · · · · · · · · ·
fn(x1, x2, · · ·xn) = 0

or, in matrix notation:
f(x) = 0

where f is a function vector.

8.2.1 Newton-Raphson method

The Newton-Raphson method starts with an approximate root x0 and gener-
ates a new approximation x by using the first-order Taylor series expansion
of function f around x0:

f(x) ≈ f(x0) + D(x0) · (x− x0)

52

D denotes the jacobian matrix (matrix of first partial derivatives). For in-
stance, for a system of 2 equations in two variables:

f1(x1, x2) = 0

f2(x1, x2) = 0

the jacobian matrix is:

D(x0) =

∂f1
∂x1

(x0
1, x

0
2) ∂f1

∂x2
(x0

1, x
0
2)

∂f2
∂x1

(x0
1, x

0
2) ∂f2

∂x2
(x0

1, x
0
2)

If x is sufficiently close to the root, f(x) ≈ 0 so:

x = x0 −D−1(x0) · f(x0)

In practice, it is better to determine a step k in the direction specified by
D−1(x0) · f(x0):

x = x0 − k ·D−1(x0) · f(x0)

The determination of k is performed by line minimization applied to the
sum of squared functions:

S(x) =
n∑
i=1

fi(x)2

This method is implemented as:

NewtEqs(Equations, Jacobian, X(), MaxIter, Tol, F())

where Equations and Jacobian are the subroutines which compute the
function vector and the jacobian matrix, respectively. Their syntaxes are:

SUB Equations(X() AS DOUBLE, F() AS DOUBLE)

SUB Jacobian(X() AS DOUBLE, D() AS DOUBLE)

The user must provide the initial approximations to the roots in vector
X(). After refinement by the subroutine, the corresponding function values
are returned in F().

The possible error codes returned by MathErr are:

• OptOk if no error occurred

• OptNonConv (non-convergence) if the number of iterations exceeds the
maximum value MaxIter

• OptSing if the jacobian matrix is quasi-singular

53

8.2.2 Approximate jacobian

Approximate values of the jacobian matrix may be computed using finite
difference approximations:

∂fi
∂xj

(x) ≈ fi(xj + hj)− fi(xj − hj)
2hj

The increment hj is such that hj = η | xj | where η is a constant which
should not be less than the square root of the machine epsilon (MachEp1/2).

This method is implemented as:

NumJacobian(Equations, X(), Eta, D())

You can use this procedure with NewtEqs by defining a subroutine such
that:

SUB Jacobian (X() AS DOUBLE, D() AS DOUBLE)

CONST Eta = 1D-6

NumJacobian @Equations, X(), Eta, D()

END SUB

(see demo program testnr.bas for an example).

As usual, it is recommended to use analytical expressions for the deriva-
tives whenever possible.

8.2.3 Broyden’s method

This method is similar to the BFGS method of function minimization. It
can also be viewed as a multidimensional version of the secant method.

Broyden’s algorithm uses the following formula to construct the inverse
jacobian matrix iteratively:

D−1
i+1 = D−1

i +

[
(δx−D−1

i · δf) · δx>
]
·D−1

i

δx> ·D−1
i · δf

with:
δx = xi+1 − xi δf = f(xi+1)− f(xi)

The algorithm is usually started with the identity matrix (D−1
0 = I).

This method is implemented as: Broyden(Equations, X(), MaxIter,

Tol, F()), where the parameters have the same significance than in NewtEqs.

The possible error codes returned by MathErr are OptOk and OptNonConv.

54

8.3 Demo programs

8.3.1 Equations in one variable

The demo programs testbis.bas, testsec.bas and testnr1.bas demon-
strate the bisection, secant and Newton-Raphson methods, respectively, on
the equation:

f(x) = x lnx− 1 = 0

for which the derivative is:

f ′(x) = ln x+ 1

The true solution is x = 1.763222834...

8.3.2 Equations in several variables

The demo programs testnr.bas and testbrdn.bas demonstrate the Newton-
Raphson and Broyden methods, respectively, on the following system (taken
from the Numerical Recipes example book) :

f(x, y) = x2 + y2 − 2 = 0

g(x, y) = exp(x− 1) + y3 − 2 = 0

for which the jacobian is:

D(x, y) =

[
2x 2y

exp(x− 1) 3y2

]

The true solution is (x, y) = (1, 1).

55

Chapter 9

Polynomials

This chapter describes the procedures and functions related to polynomials
and rational fractions.

9.1 Polynomials

Function Poly(X, Coef(), Deg) evaluates the polynomial:

P (X) = Coef(0) + Coef(1) ·X + Coef(2) ·X2 + · · ·+ Coef(Deg) ·XDeg

9.2 Rational fractions

Function RFrac(X, Coef(), Deg1, Deg2) evaluates the rational fraction:

F (X) =
Coef(0) + Coef(1) ·X + · · ·+ Coef(Deg1) ·XDeg1

1 + Coef(Deg1 + 1) + · · ·+ Coef(Deg1 + Deg2) · XDeg2

9.3 Roots of polynomials

Analytical methods can be used to compute the roots of polynomials up to
degree 4. For higher degrees, iterative methods must be used.

9.3.1 Analytical methods

• Function RootPol1(A, B, X) solves the linear equation A+BX = 0.
The function returns 1 if no error occurs (B 6= 0), -1 if X is undeter-
mined (A = B = 0), -2 if there is no solution (A 6= 0, B = 0).

56

• Functions RootPolN(Coef(), Z()), with N = 2, 3, 4, solve the equa-
tion:

Coef(0) + Coef(1) ·X + Coef(2) ·X2 + · · ·+ Coef(N) ·XN = 0

The roots are stored in the complex vector Z. The real part of the ith

root is in Z(i).X, the imaginary part in Z(i).Y.

If no error occurs, the function returns the number of real roots, oth-
erwise it returns (-1) or (-2) just like RootPol1.

9.3.2 Iterative method

Function RootPol(Coef(), Deg, Z()) solves the polynomial equation:

a0 + a1x+ a2x
2 + · · ·+ anx

n = 0

by the method of the companion matrix.

The companion matrix A is defined by:

A =

−an−1

an
−an−2

an
· · · − a1

an
− a0
an

1 0 · · · 0 0
0 1 · · · 0 0
...

...
0 0 · · · 1 0

It may be shown that the eigenvalues of this matrix are equal to the roots

of the polynomial (Eigenvalues will be treated in the next chapter).

The coefficients of the polynomial are passed in vector Coef, such that
Coef(0) = a0, Coef(1) = a1 etc. The degree of the polynomial is passed in
Deg. The roots are returned in the complex vector Z as described before.

If no error occurred, the function returns the number of real roots.

If an error occurred during the search for the ith root, the function returns
(-i). The roots should be correct for indices (i+1)..Deg. The roots are
unordered.

9.4 Ancillary functions

Two subroutines have been added to facilitate the handling of polynomials
roots:

57

• Function SetRealRoots(Deg, Z(), Tol) allows to set the imaginary
part of a root to zero if it is less than a fraction Tol of the real part.
The function returns the total number of real roots.

Due to roundoff errors, some real roots may be computed with a very
small imaginary part, e.g. 1 + 10−8i. The function SetRealRoots tries
to correct this problem.

• Subroutine SortRoots(Deg, Z()) sort the roots such that:

1. The N real roots are stored in elements 1..N of vector Z, in in-
creasing order.

2. The complex roots are stored in elements (N + 1)..Deg of vector
Z and are unordered.

9.5 Demo programs

9.5.1 Evaluation of a polynomial

Program evalpoly.bas evaluates a polynomial for a series of user-specified
values. Entering 0 stops the program.

9.5.2 Evaluation of a rational fraction

Program evalfrac.bas performs the same task as the previous program,
but with a rational fraction.

9.5.3 Roots of a polynomial

Program polyroot.bas computes the roots of a polynomial with real coef-
ficients. Analytical methods are used up to degree 4, otherwise the method
of the companion matrix is used.

The example polynomial is:

x6 − 21x5 + 175x4 − 735x3 + 1624x2 − 1764x+ 720

for which the roots are 1, 2 ... 6

58

Chapter 10

Numerical integration and
differential equations

This chapter describes the procedures available in FBMath to integrate a
function of one variable, and to solve systems of differential equations.

10.1 Integration

10.1.1 Trapezoidal rule

The trapezoidal rule approximates the integral I of a tabulated function by
the formula:

I ≈ 1

2

N−1∑
i=1

(xi+1 − xi)(yi+1 + yi)

where N is the number of points and (xi, yi) the coordinates of the ith

point.

This procedure is implemented as function TrapInt(X(), Y()). Note
that the lower bound of the arrays does not need to be 1.

10.1.2 Gauss-Legendre integration

This method approximates the integral of a function f in an interval [a, b]
by: ∫ b

a
f(x)dx ≈ b− a

2

N∑
i=1

wif(yi)

yi =
b− a

2
xi +

b+ a

2

59

The abscissae xi and weights wi are predefined values for a given number
of points N .

This method is implemented as function GausLeg(Func, A, B) for N =
16. Function Func must be declared as:

FUNCTION Func(X AS DOUBLE) AS DOUBLE

For the special case A = 0 there is a variant GausLeg0(Func, B).

10.2 Convolution

The convolution product of two functions f and g is defined by:

(f ∗ g)(t) =
∫ t

0
f(u)g(t− u)du

This product is often used to describe the ouput of a linear system when
f(t) is the input signal (function of time) and g(t) is the impulse response of
the system.

• Function Convol(Func1, Func2, T) approximates the convolution prod-
uct of the two functions Func1 and Func2 at time T by the Gauss-
Legendre method. The functions must be declared as above.

• Subroutine ConvTrap(Func1, Func2, T(), Y()) approximates the con-
volution product of the two functions Func1 and Func2 over a range of
equally spaced times T(0..N) by the trapezoidal rule. The results are
returned in Y(0..N).

10.3 Differential equations

The Runge-Kutta-Fehlberg (RKF) method allows to compute numerical so-
lutions to systems of first-order differential equations of the form:

y′1(t) = f1[t, y1(t), y2(t), · · ·]

y′2(t) = f2[t, y1(t), y2(t), · · ·]

· ·

where the fi are known functions and the yi are to be determined.

60

The RKF procedure is an extension of the classical Runge-Kutta method.
For instance, in the case of a single differential equation

y′(t) = f [t, y(t)]

this method generates a sequence {tn, yn} which approximates the function
y(t).

The order of the method corresponds to the number of points used in
the interval [tn, tn+1]. For instance, the sequence generated by the 4-th order
Runge-Kutta method is defined by:

yn+1 = yn +
k1

6
+
k2

3
+
k3

3
+
k4

6

with:
k1 = h · f(tn, yn)

k2 = h · f
(
tn +

h

2
, yn +

k1

2

)

k3 = h · f
(
tn +

h

2
, yn +

k2

2

)
k4 = h · f(tn + h, yn + k3)

with h = tn+1 − tn
In the RKF method, the step size h is automatically varied so as to

maintain a given level of precision on the estimated y values.

The implementation used in FBMath is a translation of a Fortran pro-
gram by H. A. Watts and L. F. Shampine (http://www.csit.fsu.edu/

~burkardt/f_src/rkf45/rkf45.f90). It is intermediate between the 4-th
and 5-th order Runge-Kutta methods, hence the name RKF45.

In order to use RKF45 you must:

1. Define the following constants and variables (the names are optional
and the values are given as examples, except for Flag which must be
initialized to 1):

CONST Neqn = 2 ’ Number of equations

DIM AS DOUBLE Y(1 TO Neqn) = {1, 0} ’ Functions and initial cond.

DIM AS DOUBLE Yp(1 TO Neqn) ’ Derivatives

61

DIM AS DOUBLE Tstart = 0, Tstop = 10 ’ Integration interval

DIM AS INTEGER Nstep = 5 ’ Number of steps

DIM AS DOUBLE AbsErr = 1D-6, _

RelErr = 1D-6 ’ Absolute and relative errors

DIM AS INTEGER Flag = 1 ’ Error flag

2. Define a subroutine for computing the system of differential equations:

SUB DiffEq(T AS DOUBLE, Y() AS DOUBLE, Yp() AS DOUBLE)

Yp(1) = Y(2)

Yp(2) = - Y(1)

END SUB

3. Compute the step size and call RKF45 for each integration step:

DIM AS DOUBLE StepSize = (Tstop - Tstart) / Nstep

DIM AS DOUBLE T = Tstart

DIM AS DOUBLE Tout

DIM AS INTEGER I

FOR I = 1 TO Nstep

Tout = T + StepSize

RKF45 @DiffEq, Y(), Yp(), T, Tout, RelErr, AbsErr, Flag

T = Tout

NEXT I

Upon return from the RKF45 subroutine:

• Y(), Yp() contain the values of the functions and their first derivatives
at Tout

• Flag contains an error code:

* 2 : no error

* 3 : too small RelErr value

* 4 : too much function evaluations needed

* 5 : too small AbsErr value

62

* 6 : the requested accuracy could not be achieved

* 7 : the method was unable to solve the problem

* 8 : invalid input parameters

If an error occurs, it should be possible in most cases to restart the com-
putation, using the values returned by the subroutine in RelErr and AbsErr.

Note : RKF45 may be used to compute a definite integral:∫ b

a
f(t)dt = F (b)− F (a)

since this is equivalent to integrate the differential equation:

F ′(t) = f(t)

between a and b, with the initial condition specified by f(a).

10.4 Demo programs

• Program trap.bas applies the trapezoidal rule to a tabulated function.

The example function f(x) = e−x is tabulated for x = 0 to 1 by steps
of 0.1. The integral is:∫ 1

0
e−xdx = 1− e−1 ≈ 0.6321

• Program gauss.bas demonstrates the Gauss-Legendre integration method.

The example function is f(x) = xe−x. The integral is:∫ x

0
f(t)dt = 1− (x+ 1)e−x

• Program conv.bas computes the convolution of two functions by the
Gauss-Legendre method.

The example functions are f(x) = xe−x and g(x) = e−2x. The convo-
lution product is:

(f ∗ g)(x) =
∫ x

0
f(u)g(x− u)du = e−2x

∫ x

0
ueudu = (x− 1)e−x − e−2x

63

• Program convtrap.bas computes the same convolution product by the
trapezoidal rule.

• Program test rkf.bas solves 3 systems of differential equations by the
RKF method:

1. A single nonlinear equation:

y′(t) = 0.25 · y(t) · [1− 0.05 · y(t)]

with the initial condition y(0) = 1.

The analytic solution is:

y(t) =
20

1 + 19 exp(−0.25t)

2. A system of two linear equations:

y′1(t) = y2(t)

y′2(t) = −y1(t)

with the initial conditions y1(0) = 1, y2(0) = 0.

The analytic solution is:

y1(t) = cos t y2(t) = − sin t

3. A system of 5 equations with one nonlinear:

y′1(t) = y2(t)

y′2(t) = y3(t)

y′3(t) = y4(t)

y′4(t) = y5(t)

y′5(t) =
45 · y3(t) · y4(t) · y5(t)− 40[y4(t)]3

9[y3(t)]2

with initial conditions yi(0) = 1 ∀i

The program prints the numeric solution, and, if possible, the analytic
one.

64

Chapter 11

Fast Fourier Transform

11.1 Introduction

Fourier transform is a mathematical method which allows to determine the
frequency spectrum of a given signal (for instance a sound). The mathemat-
ical definition is the following :

y(f) =
∫ ∞
−∞

x(t) exp(2πift)dt =
∫ ∞
−∞

x(t)(cos 2πft+ i sin 2πft) (11.1)

where x(t) is the input signal (function of time), f the frequency, and i
the complex number such that i2 = −1. y is the Fourier transform of x.

The input signal may have real or complex values. However, the Fourier
transform is always a complex number. For each frequency f , the modulus
of y(f) represents the energy associated with this frequency. A plot of this
modulus as a function of f gives the frequency spectrum of the input signal.

If the input signal is sampled as a sequence of n values x0, x1, ..., xn−1,
taken at constant time intervals, the Fourier transform is a sequence of com-
plex number y0, y1, ..., yn−1, such that:

yp =
n−1∑
k=0

xk

[
cos

(
2π
kp

n

)
+ i sin

(
2π
kp

n

)]
(11.2)

This formula allows, in principle, to compute the transform yp at any
point. In practice, a faster algorithm called the Fast Fourier Transform
(FFT) is used.

65

11.2 Programming

11.2.1 Array dimensioning

The FFT algorithm requires that the number of points n is a power of 2.
Moreover, the arrays must be dimensioned from 0 to n. For instance:

CONST NumSamples = 512 ’ Buffer size must be power of 2

CONST MaxIndex = NumSamples - 1 ’ Max. array index

DIM AS Complex InArray(0 TO MaxIndex) ’ FFT input

DIM AS Complex OutArray(0 TO MaxIndex) ’ FFT output

where type Complex is defined in the include file fbmath.bi as follows:

TYPE Complex

X AS DOUBLE

Y AS DOUBLE

END TYPE

11.2.2 FFT procedures

• Subroutine FFT(InArray(), OutArray()) calculates the Fast Fourier
Transform of the array of complex numbers InArray to produce the
output complex numbers in OutArray

• Subroutine IFFT(InArray(), OutArray()) calculates the Inverse Fast
Fourier Transform of the array of complex numbers represented by
InArray to produce the output complex numbers in OutArray

In other words, this subroutine reconstitutes the input signal from its
FFT.

• Function CalcFrequency(FrequencyIndex, InArray()) calculates the
complex frequency sample at a given index directly, by means of eq.
11.2. Use this instead of FFT when you only need one or two frequency
samples, not the whole spectrum. It is also useful for calculating the
Fourier Transform of a number of data which is not an integer power of
2. For example, you could calculate the transform of 100 points instead
of rounding up to 128 and padding the extra 28 array slots with zeroes.

66

11.3 Demo program

Program test fft.bas, located in the demo\fourier subdirectory, shows
how the Fourier transform may be used to filter a signal. The program plots
several graphics and writes its results to the output file fftout.txt

The example is a 200 Hz sine wave contaminated by a 2000 Hz parasitic
signal. The sampling frequency SamplingRate is 22050 Hz, the number of
points NumSamples is 512 (= 29). These two numbers determine the time
and frequency units:

CONST DT = 1 / SamplingRate ’ Time unit

CONST DF = SamplingRate / NumSamples ’ Frequency unit

so that the entry InArray(I) in the input array of subroutine FFT corre-
sponds to the signal value at time I * DT, and that the entry OutArray(I)

in the output array corresponds to the Fourier transform at frequency I *

DF.

The highest frequency which may be detected is equal to SamplingRate/2

and is called Nyquist’s frequency. Hence, only the first half of array OutArray

needs to be plotted (the second half contains symmetric values).

The program generates the input signal, plots it, then performs the FFT
and plots the real and imaginary parts as a function of frequency. The plot
shows two peaks, corresponding to the 5-th and 46-th entries in OutArray

(as seen from the file fftout.txt). The corresponding frequencies are:

5× 22050

512
≈ 215Hz

46× 22050

512
≈ 1981Hz

The high peak corresponds to the main signal and the small peak to
the parasite. To filter the last one, the program sets to zero all the FFT
values corresponding to the frequencies higher than 1000 Hz, according to
the following code:

CONST MidIndex = NumSamples \ 2

FreqIndex = 1000 / DF

SymIndex = NumSamples - FreqIndex

FOR I = 0 TO MaxIndex

67

IF (I > FreqIndex AND I < MidIndex) OR _

(I >= MidIndex AND I < SymIndex) THEN

OutArray(I).X = 0

OutArray(I).Y = 0

END IF

NEXT I

(note that the two halves of the output array, on either side of Nyquist’s
frequency, must be treated).

The program then calls subroutine IFFT to compute the inverse Fourier
transform of the modified data and plots the result, showing that the parasite
has been removed, at the expense of a slight distorsion of the main signal.

In addition, the program performs a direct computation of the Fourier
transform of a set of random complex values, using function CalcFrequency,
and stores the results in the output file, for comparison with the FFT com-
puted on the same data.

68

Chapter 12

Random numbers

This chapter describes the procedures and functions available to generate
random numbers and perform stochastic simulation and optimization.

We will assume here that FreeBASIC is operated in the -lang fb mode,
i. e. the default mode.

In this mode, the random number generator (RNG) is the ‘Mersenne
Twister’ generator of Takuji Nishimura and Makoto Matsumoto (http://
www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html). This RNG has
a long period (about 106000) and produces uncorrelated numbers in 623 di-
mensions.

12.1 Random numbers

12.1.1 Uniform random numbers

In addition to the built-in function RND, the following functions are provided
in FBMath (these functions were contributed by Greg Lyon).

Function Type Bits Interval
IRanGen UInteger 32 [0, 4294967295]

IRanGen31 Long 31 [0, 2147483647]
RanGen1 Double 32 [0, 1]
RanGen2 Double 32 [0, 1)
RanGen3 Double 32 (0, 1)
RanGen53 Double 53 [0, 1)

Note that RanGen2 is equivalent to the built-in function RND.

69

12.1.2 Gaussian random numbers

Normal distribution

• Function RanGaussStd generates a random number from the standard
normal distribution.

The Box-Muller algorithm is used: if x1 and x2 are two uniform random
numbers ∈ (0, 1), the two numbers y1 and y2 defined by:

y1 =
√
−2 lnx1 cos 2πx2 y2 =

√
−2 lnx1 sin 2πx2

follow the standard normal distribution.

• Function RanGauss(Mu, Sigma) generates a random number from the
normal distribution with mean Mu and standard deviation Sigma.

Multinormal distribution

• Subroutine RanMult(M(), L(), X()) generates a random vector X from
a multidimensional normal distribution. M is the mean vector, L is the
Cholesky factor of the variance-covariance matrix.

To simulate the n-dimensional multinormal distributionN (m,V), where
m is the mean vector and V the variance-covariance matrix, the fol-
lowing algorithm is used:

1. Let u be a vector of n independent random numbers following the
standard normal distribution,

2. Let L be the lower triangular matrix resulting from the Cholesky
factorization of matrix V,

3. Vector x = m+Lu follows the multinormal distributionN (m,V).

• Subroutine RanMultIndep(M(), S(), X()) generates a random num-
ber from an uncorrelated multidimensional distribution. Here S is sim-
ply the vector of standard deviations.

12.2 Markov Chain Monte Carlo

It is not always possible to simulate the distribution of a random variable
with a direct algorithm such as the ones used for normal or multinormal
distributions.

70

However, there exist iterative algorithms which generate a sequence of
random variables for which the distribution tend towards the desired distri-
bution, after starting from a standard distribution (e. g. uniform).

These random sequences are known as Markov chains and the itera-
tive simulation method is therefore known as Markov chain Monte-Carlo
(MCMC).

There are several MCMC variants. Here we will present the Metropolis-
Hastings method.

Let X a vector of random variables and P (X) its probability density
function (p.d.f.), which is to be simulated. The classical formulation of the
Metropolis-Hastings algorithm is the following:

1. Choose an initial parameter vector X0

2. At iteration n:

(a) Draw a vector u from the multinormal distribution N (Xn−1,V)
where V is the variance-covariance matrix

(b) If r = P (u)/P (Xn−1) > 1, set Xn = u
otherwise if Random(0, 1) < r, set Xn = u
where Random(0, 1) denotes a uniform random number in the
interval [0,1]

3. Set n = n+ 1; goto 2

It is convenient to introduce a function F (X) such that:

P (X) = C exp

[
−F (X)

T

]
⇐⇒ F (X) = −T ln

P (X)

C
(12.1)

where C and T are positive constants. By analogy with statistical ther-
modynamics, T is known as the temperature.

From this equation, it may be seen that:

r =
P (u)

P (Xn−1)
= exp

(
−∆F

T

)

where
∆F = F (u)− F (Xn−1)

so, the Metropolis-Hastings algorithm may be rewritten as:

71

1. Choose an initial parameter vector X0

2. At iteration n:

(a) Draw a vector u from the multinormal distribution N (Xn−1,V)
Set ∆F = F (u)− F (Xn−1)

(b) if ∆F < 0, set Xn = u
otherwise if Random(0, 1) < exp(−∆F/2), set Xn = u

3. Set n = n+ 1; goto 2

The initial variance-covariance matrix V may be diagonal and its ele-
ments may be given large values, so that the initial distribution spans a
relatively large space. When the iterations progress, the matrix converges to
the variance-covariance matrix of the simulated distribution. It is often use-
ful to perform several cycles of the algorithm, with the variance-covariance
matrix being re-evaluated at the end of each cycle.

The vector X corresponding to the lowest value of F is recorded; hence,
the algorithm may be used as a stochastic optimization algorithm for min-
imizing the function F . The advantage of such an algorithm is that it can
‘escape’ from a local minimum (with a probability equal to e−∆F/T) and has
therefore more chances to reach the global minimum, unlike the determinis-
tic optimizers studied in chapter 7, for which only decreases of the function
are acceptable. This application is however restricted by the fact that the
function F must be linked to a p.d.f. by means of eq. (12.1).

This method is implemented in FBMath as:

Hastings(Func, T, X(), V(), Xmat(), Xmin(), Fmin)

The user must provide :

• the function Func to be minimized (defined as in paragraph 7.2, p. 42)

• the temperature T

• a starting vector X()

• a starting variance-covariance matrix V().

On output, Hastings returns:

• the mean of the simulated distribution in X()

72

• its variance-covariance matrix in V()

• a matrix of simulated vectors in Xmat() (one vector by line)

• the vector which minimizes the function in Xmin()

• the value of the function at the minimum in Fmin (corresponds to the
mode of the simulated distribution).

The behavior of the algorithm can be controlled with the following pro-
cedure:

InitMHParams(NCycles, MaxSim, SavedSim)

where:

• NCycles is the number of cycles (default = 10)

• MaxSim is the maximum number of simulations at each cycle (default
= 1000)

• SavedSim is the number of simulated vectors which are saved in matrix
Xmat(). Only the last SavedSim vectors from the last cycle are saved.
(default = 1000)

After a call to Hastings, function MathErr will return one of the following
codes:

• OptOk if no error occurred

• MatNotPD if the variance-covariance matrix is not positive definite

The random number generator is re-initialized at the start of the algo-
rithm, so that a different result will be obtained for each call of the subrou-
tine.

12.3 Simulated Annealing

Simulated annealing (SA) is an extension of the Metropolis-Hastings algo-
rithm which tries to find the global minimum of any function (not necessarily
a p.d.f.). Here the temperature starts from a high value and is progressively
decreased as the algorithm progresses towards the minimum. The optimized
parameters may then be refined with a local optimizer (chapter 7).

73

There are several implementations of this algorithm. The one used in
FBMath is a modification of a Fortran program written by B. Goffe (http:
//www.netlib.org/simann).

With the notations:

F (X) : function to be minimized
δX : range of X
Fmin : minimum of F (X)
T : temperature
NT : number of loops at constant T
NS : number of loops before adjustement of δX
RT : temperature reduction factor
Nacc : number of accepted function increases

the algorithm may be described as follows:

• initialize T,X, δX

• repeat

◦ repeat NT times

? repeat NS times

for each parameter Xi :
� pick a random value X ′i in the interval Xi ± δXi

� compute F (X ′i)
� accept the new value X ′i according to the Metropolis
criterion
� update Nacc

� update Fmin if necessary

? adjust step length δXi so as to maintain an acceptance ratio
of about 50%

◦ T ← T ·RT

• until Nacc = 0 or T < Tmin or |Fmin| < ε

The threshold values Tmin and ε are fixed at 10−300 in our implementation.

At the beginning of the iterations, while we are away from the minimum,
it makes sense to choose a high probability of acceptance, for instance p = 1

2
.

74

It is then possible to perform a given number of random drawings and to
compute the median M of the increases of function F , from which the initial
temperature T0 is deduced by:

p = exp
(
−M
T0

)
=

1

2
⇒ T0 =

M

ln 2

This procedure is implemented in the following subroutine:

SimAnn(Func, X(), Xmin(), Xmax(), Fmin)

where:

• Func is the function to be minimized (defined as in paragraph 7.2, p.
42)

• X() is the parameter vector

• Xmin(), Xmax() are the bound values of X()

The optimized parameters are returned in X() and the corresponding
function value in Fmin

The user must provide reasonable values of Xmin() and Xmax() as well
as a starting value for X(). It is convenient to pick a random value in the
range specified by Xmin() and Xmax().

Upon return from the subroutine, function MathErr() will return one of
the following error codes:

• MatOk if no error

• MatErrDim if X(), Xmin(), Xmax() don’t have the same bounds

The behavior of the algorithm can be controlled with the following pro-
cedure:

InitSAParams(NT, NS, RT, NCycles)

where:

• NT, NS, RT correspond to the variables NT , NS and RT in the algo-
rithm. Default values are 5, 15 and 0.9 respectively.

• NCycles is the number of cycles (default = 1).

75

In some difficult situations, it may be useful to perform several cycles
of the algorithm. Each cycle will start with the optimized parameters X()

from the previous cycle and the temperature will be re-initialized (the bound
values Xmin(), Xmax() remaining the same).

It is possible to record the progress of the iterations in a log file. This file
is created with:

SA_CreateLogFile(LogFileName)

The default name is simann.txt

If the file is created, the following information will be stored:

• iteration number (each iteration corresponds to a single temperature)

• temperature value

• lowest function value obtained at this temperature

• number of function increases

• number of accepted increases

The file will be automatically closed upon return from SimAnn.

12.4 Genetic Algorithm

Genetic Algorithms (GA) are another class of stochastic optimization meth-
ods which try to mimick the law of natural selection in order to optimize a
function F (X).

There are several implementations of these algorithms. We use a method
described by E. Perrin et al. (Recherche operationnelle / Operations Re-
search, 1997, 31, 161-201). In this version, the vector X is considered as the
‘phenotype’ of an ‘individual’ belonging to a ‘population’. This phenotype is
determined by two ‘chromosomes’ C1 and C2 and a vector of ‘dominances’
D such that:

Xi = DiC1i + (1−Di)C2i (0 < Di < 1) (12.2)

A population is defined by a matrix P, such that each row of the matrix
corresponds to a vector X.

76

The population is initialized by taking vectors C1 and C2 at random in
a given interval, vector D at random in (0,1) then applying eq. (12.2) to
obtain the corresponding X vectors.

At each step (‘generation’) of the algorithm:

1. The function values F (X) are computed for each vector X and the
NS individuals having the lowest function values (the ‘survivors’) are
selected.

2. The remaining individuals are discarded and replaced by new ones,
generated as follows:

(a) Two ‘parents’ are chosen at random in the selected sub-population
and a ‘child’ is generated by:

• taking the vectors C1 and C2 at random from the parents

• generating a new vector D

• computing the new X according to eq. (12.2)

This process is repeated until the function value for the child is
lower than the lowest function value of the two parents.

(b) The child is ‘mutated’ (i. e. its vectors are reinitialized at random)
with a probability MR

(c) The child is made ‘homozygous’ (i. e. its vectors C1 and C2 are
made identical to its vector X) with a probability HR

This procedure is implemented in the following subroutine:

GenAlg(Func, X(), Xmin(), Xmax(), Fmin)

where the parameters have the same meaning as in SimAnn. The error
codes returned by function MathErr are also the same.

The behavior of the algorithm can be controlled with the following pro-
cedure:

InitGAParams(NP, NG, SR, MR, HR)

where:

• NP is the population size (default = 200)

• NG is the number of generations (default = 40)

77

• SR is the survival rate (default = 0.5)

• MR is the mutation rate (default = 0.1)

• HR is the probability of homozygosis (default = 0.5)

A log file may also be created with:

GA_CreateLogFile(LogFileName)

The default name is genalg.txt. The file will contain the iteration (gen-
eration) number and the optimized function value for this generation.

12.5 Demo programs

12.5.1 The MWC generator

This program demonstrates an alternative RNG : the ‘Multiply With Carry’
(MWC) generator of George Marsaglia.

This generator produces a sequence {In} of integer numbers by means of
the following recurrence relationships:

In+1 = (aIn + cn) mod b

cn+1 = (aIn + cn) div b

where a is the multiplier, b the base (here b = 232), cn the carry. One
may start with c0 = 0.

If a is properly chosen, the period of the generator is a × 231 − 1. In
our implementation, a = 2051013963 so that the period is approximately
4.4× 1018.

The program testmwc.bas picks 2000 random numbers and displays the
next 6 together with the correct values obtained with the default initializa-
tion, i.e. InitMWC(123456789). These values have been checked with the
Maple software.

78

12.5.2 Test of MT generator

Program testmt.bas writes 1000 integer numbers and 1000 real numbers
from functions IRanGen and RanGen2, after initialization with a vector of 4
integers:

DIM Init(0 TO 3) AS UINTEGER = {&H123, &H234, &H345, &H456}

SetRNG RNG_MT

InitMTbyArray Init()

The output of this program should be similar to the contents of file
mt out.txt

12.5.3 The UVAG generator

Program testuvag.bas demonstrates the ‘Universal Virtual Array Genera-
tor’ (UVAG) of Alex Hay.

The program writes 1000 integer numbers (32-bit or 64-bit) from functions
IRanUVAG or IRanUVAG64, after initialization with the string ”abcd”. The
output should be similar to the contents of file uvag32.txt or uvag64.txt

12.5.4 File of random numbers

Program randfile.bas generates a binary file of 32-bit random integers to
be used as input for the DIEHARD program. The user must specify the
number of random integers to be generated (default is 3,000,000).

12.5.5 Gaussian random numbers

Program testnorm.bas picks a random sample of size N from a gaussian
distribution with known mean and standard deviation (SD), estimates mean
(m) and SD (s) from the sample, and computes a 95% confidence interval
for the mean (i.e. an interval which has a probability of 0.95 to include the
true mean), using the formula:[

m− 1.96
s√
N
,m+ 1.96

s√
N

]

This formula is valid for N > 30.

79

12.5.6 Multinormal distribution

Program ranmul.bas simulates a multi-normal distribution. The example is
a 3-dimensional distribution with the following means, standard deviations,
and correlation matrix:

m =

 1
2
3

 s =

 0.1
0.2
0.3

 R =

 1 0.25 0.5
0.25 1 −0.25
0.5 −0.25 1

After 1000 simulations with the default random number initialization, the

following estimations were obtained:

m̂ =

 0.99
2.00
2.98

 ŝ =

 0.095
0.201
0.302

 R̂ =

 1 0.229 0.462
0.229 1 −0.281
0.462 −0.281 1

12.5.7 Markov Chain Monte-Carlo

Although MCMC methods are best suited when there is no direct simulation
algorithm available, we will use the Metropolis-Hastings method to simulate
the previous multinormal distribution (program testmcmc.bas).

First, we have to define the function to be optimized. The probability
density for a n-dimensional normal distribution N (m,V) is:

P (X) =
1√

(2π)n|V|
exp

[
−1

2
(X−m)>V−1(X−m)

]

So, according to eq. 12.1, T = 2 and:

F (X) = (X−m)>V−1(X−m)

Then, we have to define a starting vector Xsim and variance-covariance
matrix Vsim. In order to show that the algorithm can converge from a point
chosen relatively far away from the optimum, we have chosen Xsim = 3m
and Vsim = diag(10Vii).

With the default initializations (10 cycles of 1000 simulations each), the
results of a typical run were:

m̂ =

 1.01
2.02
3.01

 ŝ =

 0.099
0.210
0.320

 R̂ =

 1 0.286 0.467
0.286 1 −0.299
0.467 −0.299 1

80

12.5.8 Simulated Annealing

Program simann.bas uses simulated annealing to minimize a set of 10 notori-
ously difficult functions (most of them presenting multiple minima). Several
successive runs of the program may be necessary to have all functions min-
imized (the random number generator being reinitialized at each call of the
SimAnn subroutine).

12.5.9 Genetic Algorithm

Program genalg.bas optimizes the same functions than the previous pro-
gram but with genetic algorithm. Here, too, it may be necessary to run the
program several times.

81

Chapter 13

Statistics

This chapter describes some of the statistical functions available in FBMath.
The specific problem of curve fitting will be considered in subsequent chap-
ters.

13.1 Descriptive statistics

The following functions are available:

• Function Mean(X()) returns the mean of sample X, defined by:

m =
1

n

n∑
i=1

xi

where n is the size of the sample.

• Function Median(X(), Sorted) returns the median of X, defined as the
number xmed which has equal numbers of values above it and below it.
If the array X has been sorted, the median is:

xmed = xn+1
2

(n odd)

xmed = 1
2

(
xn

2
+ xn

2
+1

)
(n even)

The parameter Sorted indicates if array X has been sorted before calling
function Median. If not, it will be sorted within the function (the array
X will therefore be modified).

82

Sorting is performed by calling a subroutine QSort(X()) which imple-
ments the ‘Quick Sort’ algorithm. Of course, this subroutine may be
called outside function Median.

The default value of parameter Sorted is True (assuming that the
array has already been sorted). So, Median(X()) is equivalent to
Median(X(), True).

• Function StDev(X(), M) returns the estimated standard deviation of
the population from which sample X is extracted, M being the mean of
the sample. This standard deviation is defined by:

s =

√√√√ 1

n− 1

n∑
i=1

(xi −m)2

These estimated standard deviations are used in statistical tests.

• Function StDevP(X(), M) returns the standard deviation of X, consid-
ered as a whole population. This standard deviation is defined by:

σ =

√√√√ 1

n

n∑
i=1

(xi −m)2

• Function Skewness(X(), M, Sigma) returns the skewness of X, with
mean M and standard deviation Sigma. This parameter is defined by:

γ1 =
1

nσ3

n∑
i=1

(xi −m)3

Skewness is an indicator of the symmetric nature of the distribution.
It is zero for a symmetric distribution (e. g. Gaussian), and positive
(resp. negative) for an assymetric distribution with a tail extending
towards positive (resp. negative) x values.

• Function Kurtosis(X(), M, Sigma) returns the kurtosis of X, with
mean M and standard deviation Sigma. This parameter is defined by:

γ2 =
1

nσ4

n∑
i=1

(xi −m)4 − 3

Kurtosis is an indicator of the flatness of the distribution. It is zero for a
Gaussian distribution, and positive (resp. negative) if the distribution
is more (resp. less) ‘sharp’ than the Gaussian.

83

13.2 Comparison of means

13.2.1 Student’s test for independent samples

We have 2 independent samples with sizes n1, n2, means m1,m2, standard
deviations s1, s2. It is assumed that the samples are taken from gaussian
populations with means µ1, µ2 and equal variances. The sample means are
compared by computing the t-statistic:

t =
m1 −m2

s
√

1/n1 + 1/n2

where s2 is the estimation of the common variance:

s2 =
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2

If n1 ≥ 30 and n2 ≥ 30, the conditions of normality and equal variances
are no longer required and the formula begins:

t =
m1 −m2√

s2
1/n1 + s2

2/n2

The null hypothesis is (H0) : µ1 = µ2

The alternative hypothesis (H1) depends on the test:

One-tailed test (H1) : µ1 > µ2 ⇒ reject (H0) if t > t1−α
(H1) : µ1 < µ2 ⇒ reject (H0) if t < t1−α

Two-tailed test (H1) : µ1 6= µ2 ⇒ reject (H0) if |t| > t1−α/2

where t1−α is the value of the Student variable such that the cumulative
probability function Φν(t) = 1− α at ν = n1 + n2 − 2 d.o.f. (cf. chap. 5).

If H0 is rejected, the difference of the means is considered significant at
risk α

This procedure is implemented in the following subroutine :

StudIndep(N1, N2, M1, M2, S1, S2, T, DoF)

where (N1, N2) are the sizes of the samples, (M1, M2) their means and
(S1, S2) the estimated standard deviations (computed with StDev). The
procedure returns Student’s t in T and the number of degrees of freedom in
DoF.

84

13.2.2 Student’s test for paired samples

If the samples are paired (e. g. the same patients before and after a treat-
ment), the t-statistic becomes:

t =
md

sd

√
n

where md and sd are, respectively, the mean and standard deviations of the
differences (x1i− x2i) between the paired values in the two samples, and n is
the common size of the samples.

Apart from this, the test is carried out as with the independent case, with
(n− 1) d. o. f.

This procedure is implemented in the following subroutine :

StudPaired(X(), Y(), T, DoF)

where X(), Y() are the two samples. The procedure returns Student’s t
in T and the number of degrees of freedom in DoF.

After a call to this procedure, function MathErr returns one of the fol-
lowing error codes:

• FOk (0) if no error occurred

• FSing (-2) if sd = 0

• MatErrDim (-3) if X() and Y() have different sizes.

13.2.3 One-way analysis of variance (ANOVA)

We have k independent samples with sizes ni, means mi, standard deviations
si. It is assumed that the samples are taken from gaussian populations with
means µi and equal variances. The goal is to compare the k means.

The following equation holds:

SSt = SSf + SSr (13.1)

with:

SSt =
k∑
i=1

ni∑
j=1

(xij − x̄)2 SSf =
k∑
i=1

ni(mi − x̄)2 SSr =
k∑
i=1

(ni − 1)s2
i

85

• x̄ is the global mean:

x̄ =
1

n

k∑
i=1

nimi n =
k∑
i=1

ni

• SSt is the total sum of squares ; it has (n− 1) degrees of freedom

• SSf is the factorial sum of squares ; it has (k − 1) degrees of freedom.

• SSr is the residual sum of squares ; it has (n− k) degrees of freedom

Note that the degrees of freedom (d.o.f.) are additive, just like the sums
of squares:

(n− 1) = (k − 1) + (n− k)

The variances are defined by dividing each sum of squares by the corre-
sponding number of d.o.f.

Vt =
SSt
n− 1

Vf =
SSf
k − 1

Vr =
SSr
n− k

These are the total, factorial, and residual variances, respectively. Note
that the variances, unlike the sum of squares, are not additive!

The comparison of means is performed by computing the F -statistic:

F =
Vf
Vr

The null hypothesis is (H0) : µ1 = µ2 = · · · = µk

(H0) is rejected if F > F1−α where F1−α is the value of the Fisher-Snedecor
variable such that the cumulative probability function Φν1,ν2(F) = 1 − α at
ν1 = k − 1 and ν2 = n− k d.o.f. (cf. chap. 5).

This procedure is implemented in the following subroutine :

AnOVa1(N(), M(), S(), V_f, V_r, F, DoF_f, DoF_r)

where N() are the sizes of the samples, M() their means and S() the esti-
mated standard deviations (computed with StDev). The procedure returns
the factorial and residual variances in V f and V r, their ratio in F and their
numbers of d. o. f. in DoF f and DoF r.

After a call to this procedure, function MathErr returns one of the fol-
lowing error codes:

• FOk (0) if no error occurred

• FSing (-2) if n− k ≤ 0

• MatErrDim (-3) if the arrays have non-compatible dimensions

86

13.2.4 Two-way analysis of variance

We assume here that the means of the samples depend on two factors A and
B, such that the sample corresponding to the i-th level of A and the j-th
level of B has mean mij and standard deviation sij.

It is also assumed that all samples are taken from gaussian populations
with equal variances, and that they have the same size n.

The previous equations become:

x̄ =
1

npq

p∑
i=1

q∑
j=1

nmij

SSt =
p∑
i=1

q∑
j=1

(xij−x̄)2 SSf =
p∑
i=1

q∑
j=1

n(mij−x̄)2 SSr =
p∑
i=1

q∑
j=1

(n−1)s2
ij

with npq − 1, pq − 1, and (n− 1)pq d.o.f., respectively.

In addition, the factorial sum of squares can be splitted into three terms:

SSA = qn
p∑
i=1

(mi. − x̄)2 ; (p− 1) d.o.f.

SSB = pn
q∑
j=1

(m.j − x̄)2 ; (q − 1) d.o.f.

SSAB = n
p∑
i=1

q∑
j=1

(mij −mi. −m.j + x̄)2 ; (p− 1)(q − 1) d.o.f.

where mi. and m.j are the conditional means:

mi. =
1

q

q∑
j=1

mij m.j =
1

p

p∑
i=1

mij

that is, the means of the lines and columns of matrix [mij]

These sums of squares represent, respectively, the influence of factor A,
the influence of factor B, and the interaction of the two factors (that is, the
fact that the influence of one factor depends on the level of the other factor).

The variances are computed as before:

VA =
SSA
p− 1

VB =
SSB
q − 1

VAB =
SSAB

(p− 1)(q − 1)
Vr =

SSr
(n− 1)pq

There are three null hypotheses:

87

(H0)A : The populations means do not depend on factor A
(H0)B : The populations means do not depend on factor B
(H0)AB : There is no interaction between the two factors

Each hypothesis is tested by computing the corresponding F -statistic
(for instance, FA = VA/Vr for testing (H0)A) and comparing with the critical
value F1−α

Special case: n = 1. If there is only one observation per sample, the
residual variance is zero. The null hypotheses (H0)A and (H0)B are tested
with FA = VA/VAB and FB = VB/VAB. The interaction of the factors cannot
be tested.

This procedure is implemented in the following subroutine :

AnOVa2(N, M(), S(), V(), F(), DoF())

where N is the common size of the samples, M() the matrix of means
and S() the matrix of standard deviations, such that the lines correspond to
factor A and the columns to factor B.

The procedure returns the variances in vector V(1..4) = [VA, VB, VAB, Vr],
the variance ratios in F(1..3) = [FA, FB, FAB], and the degrees of freedom
in DoF(1..4). If N = 1, the last element of each vector disappears.

After a call to this procedure, function MathErr returns one of the fol-
lowing error codes:

• FOk (0) if no error occurred

• MatErrDim (-3) if the arrays have non-compatible dimensions.

13.3 Comparison of variances

13.3.1 Comparison of two variances

We have 2 independent samples with sizes n1, n2, standard deviations s1, s2.
It is assumed that the samples are taken from gaussian populations with
variances σ2

1, σ
2
2.

Snedecor’s test uses the following statistic:

F =
max(s2

1, s
2
2)

min(s2
1, s

2
2)

which is compared with the critical value F1−α/2 (two-tailed test).

This procedure is implemented in the following subroutine :

88

Snedecor(N1, N2, S1, S2, F, DoF1, DoF2)

where (N1, N2) are the sizes of the samples and (S1, S2) the estimated
standard deviations. The procedure returns the variance ratio in F and the
numbers of d. o. f. in DoF1 and DoF2.

13.3.2 Comparison of several variances

We have k independent samples with sizes ni, standard deviations si. It is
assumed that the samples are taken from gaussian populations with variances
σ2
i . The goal is to compare the k variances.

Bartlett’s test uses the following statistic:

B =
1

λ

[
(n− k) lnVr −

k∑
i=1

(ni − 1) ln s2
i

]

λ = 1 +
1

3(k − 1)

[
k∑
i=1

1

ni − 1
− 1

n− k

]
where n =

∑
ni and Vr is the residual variance, as defined previously (§

13.2.3).

The null hypothesis is:

(H0) : σ2
1 = σ2

2 = · · · = σ2
k

Under (H0), B follows approximately the χ2 distribution with (k − 1) d.
o. f. The hypothesis is tested by comparing B with the value χ2

1−α such that
the cumulative probability function Φν(χ

2) = 1 − α at ν = k − 1 d.o.f. (cf.
chap. 5).

This procedure is implemented in the following subroutine :

Bartlett(N(), S(), Khi2, DoF)

where N() are the sizes of the samples and S() the estimated standard
deviations. The procedure returns Bartlett’s statistic in Khi2 and the number
of d. o. f. in DoF. The error codes are the same than for AnOVa1

13.4 Non-parametric tests

Non-parametric tests are used when the assumptions needed by the classical
tests (gaussian populations with equal variances) are not fulfilled. They are
also called rank tests because they work with the ranks of the values, rather
than the values themselves.

89

13.4.1 Mann-Whitney test

This test compares the means of two independent samples. It is the non-
parametric analog of Student’s test for independent samples.

The test uses the following statistic:

U = min(u1, u2)

with:

u1 = n1n2 +
n1(n1 + 1)

2
− r1 ; u2 = n1n2 +

n2(n2 + 1)

2
− r2

where (n1, n2) are the sample sizes, (r1, r2) the sums of the ranks of the
two samples.

If n1 ≥ 20 and n2 ≥ 20, the variable:

ε =
U − µ
σ

with:

µ =
n1n2

2
; σ =

√
n1n2(n1 + n2 + 1)

12

follows the standard normal distribution under (H0).

This procedure is implemented in the following subroutine :

Mann_Whitney(X1(), X2(), U, Eps)

where X1(), X2() are the two samples. The procedure returns Mann-
Whitney’s statistic in U and the associated normal variable in Eps.

13.4.2 Wilcoxon test

This test compares the means of two paired samples. It is the non-parametric
analog of Student’s test for paired samples.

The test uses the following statistic:

T = min(T+, T−)

where T+ and T− are the sums of the ranks of the positive and negative
differences between the values of the two samples.

90

If the sample size is N > 25, the variable:

ε =
T − µ
σ

with:

µ =
N(N + 1)

4
; σ =

√
N(N + 1)(2N + 1)

24

follows the standard normal distribution under (H0).

This procedure is implemented in the following subroutine :

Wilcoxon(X(), Y(), Ndiff, T, Eps)

where X(), Y() are the two samples. The procedure returns the number
of non-zero differences in Ndiff, Wilcoxon’s statistic in T and the associated
normal variable in Eps.

13.4.3 Kruskal-Wallis test

This test compares the means of several independent samples. It is the non-
parametric analog of one-way ANOVA.

The test uses the following statistic:

H =
12

n(n+ 1)

k∑
i=1

r2
i

ni
− 3(n+ 1)

where k is the number of samples, ni the size of sample i, ri the sum of
the ranks for sample i and n the total size.

If ni > 5 ∀i, H follows the χ2 distribution with k − 1 d.o.f.

This procedure is implemented in the following subroutine :

Kruskal_Wallis(N(), X(), H, DoF)

where N() is the vector of sizes and X() the sample matrix (with the
samples as columns). The procedure returns the Kruskal-Wallis statistic in
H and the number of d. o. f. in DoF.

91

13.5 Statistical distribution

A statistical distribution is generated by binning data into a set of statistical
classes]xi, xi+1]. Each class is characterized by the following parameters:

• its bounds xi, xi+1

• the number of values ni contained in the class

• the frequency fi = ni/N where N is the total number of values

• the density di = fi/(xi+1 − xi)

This structure is implemented in FBMath as:

TYPE StatClass

Inf AS DOUBLE ’ Lower bound

Sup AS DOUBLE ’ Upper bound

N AS INTEGER ’ Number of values

F AS DOUBLE ’ Frequency

D AS DOUBLE ’ Density

END TYPE

A distribution is generated with the following subroutine:

Distrib(X(), A, H, Ntot, C())

where X() is the original set of values, A the lower bound of the first class
and H the common width of the classes. The total number of values in the
classes is returned in Ntot and the distribution is returned in C() which is
an array of type StatClass.

13.6 Comparison of distributions

13.6.1 Observed and theoretical distributions

An observed distribution may be compared to a theoretical one by using the
following statistics:

• Pearson’s χ2 :

χ2 =
p∑
i=1

(Oi − Ci)2

Ci

92

• Woolf’s G :

G = 2
p∑
i=1

Oi ln
Oi

Ci

where Oi and Ci denote the observed and theoretical numbers of values
in class i, and p the number of classes.

The null hypothesis is (H0): the observed distribution conforms to the
theoretical one (it is a test for conformity)

Under (H0), both statistics follow the χ2 distribution with (p − 1 − Ne)
d. o. f., where Ne is the number of parameters which have been estimated
to compute the Ci values (e. g. Ne = 2 if the mean and standard deviation
of the distribution have been estimated).

(H0) is rejected if the chosen statistic is higher than the critical value
χ2

1−α for the chosen risk α.

Pearson’s statistic is an approximation of Woolf’s statistic. It is usually
recommended to use it only if Ci ≥ 5 ∀i.

These procedures are implemented as:

Khi2_Conform(Obs(), Calc(), N_estim, Khi2, DoF)

Woolf_Conform(Obs(), Calc(), N_estim, G, DoF)

where Obs() and Calc() denote the observed and theoretical distribu-
tions, and N estim the number of estimated parameters. The statistic is
returned in Khi2 or G and the number of d. o. f. in DoF.

13.6.2 Several observed distributions

To compare several observed distributions, we can group them into a contin-
gency table O such that Oij denotes the number of values for class i in the
j-th distribution.

The Pearson and Woolf statistics may then be computed as:

χ2 =
p∑
i=1

q∑
j=1

(Oij − Cij)2

Cij

G = 2
p∑
i=1

q∑
j=1

Oij ln
Oij

Cij

93

where p the number of classes, q the number of distributions, and Cij the
theoretical value of Oij, computed as:

Cij =
Ni.N.j

N

where Ni. is the sum of terms in line i, N.j is the sum of terms in column j,
and N the global sum of all terms in the matrix (N =

∑
iNi. =

∑
j N.j).

The null hypothesis is (H0): the observed distributions come from the
same population (it is a test for homogeneity or independence).

Under (H0), both statistics follow the χ2 distribution with (p− 1)(q− 1)
d. o. f.

These procedures are implemented as:

Khi2_Indep(Obs(), Khi2, DoF)

Woolf_Indep(Obs(), G, DoF)

where Obs() is the matrix of observed distributions. The statistic is
returned in Khi2 or G and the number of d. o. f. in DoF.

13.7 Demo programs

These programs are located in the demo\stat subdirectory of the FBMath

directory.

13.7.1 Descriptive statistics, comparison of means and
variances

Program stat.bas performs a statistical analysis of hemoglobin concentra-
tions in two samples of 30 men and 30 women. The computed parameters
are the mean, standard deviation, skewness and kurtosis. The means are
compared by Student’s test (two-tailed) and Mann-Whitney’s test, and the
variances are compared by Snedecor’s test.

13.7.2 Student’s test for paired samples

Program student.bas compares the means of two paired samples, using
Student’s and Wilcoxon’s two-tailed tests.

94

13.7.3 One-way analysis of variance

Program anova1.bas compares the means of 5 independent samples, each
with 12 observations, using one-way ANOVA and the Kruskal-Wallis test. In
addition, the variances of the samples are compared with Bartlett’s test.

13.7.4 Two-way analysis of variance

• Program anova2.bas compares the means of 4 samples, depending on
two factors, using two-way ANOVA. Each sample contains 12 observa-
tions.

• Program anova2a.bas performs two-way ANOVA with one observation
per sample.

13.7.5 Statistical distribution

Program distrib.bas uses the hemoglobin data from program stat.bas

(men data) to generate a statistical distribution.

The first step determines a suitable range for the data. This is done by
calling procedure Interval :

Interval X(1), X(N), 5, 10, XMin, XMax, XStep

The arguments 5 and 10 represent the minimal and maximal number of
classes which is desired.

The second step generates the distribution, using the ranges determined
in the previous step:

Nc = (Xmax - Xmin) / XStep

DIM AS StatClass C(1 TO Nc)

Distrib X(), Xmin, XStep, Ntot, C()

This distribution is then compared with the normal distribution, using
both χ2 and Woolf’s tests. The theoretical Ci values are computed from the
cumulative probability function for the normal distribution having the same
mean and standard deviation than the observed distribution.

The program plots an histogram of the observed distribution, together
with the curve corresponding to the normal distribution. This curve is gen-
erated from the probability density function:

95

FUNCTION PltFunc(X AS DOUBLE) AS DOUBLE

PltFunc = DNorm((X - M) / S) / S

END FUNCTION

where M, S are the mean and standard deviation of the observed distribu-
tion, and DNorm is the probability density of the standard normal distribution
(see chapter 5). Note that the histogram is constructed with the class densi-
ties as ordinates, so that a comparison with the plotted curve can be made.

13.7.6 Comparison of distributions

Program khi2.bas performs both χ2 and Woolf’s tests, first to compare an
observed distribution with a theoretical one, and then to analyse a contin-
gency table.

96

Chapter 14

Linear regression

This chapter describes the routines available in FBMath for fitting a straight
line by linear regression. Other types of curve fitting will be described in
subsequent chapters.

14.1 Straight line fit

The problem is to determine the equation of the line which comes closest to
a set of points.

The model is defined by the equation:

y = a+ bx

• x is the independent (or ‘explicative’) variable

• y is the dependent (or ‘explained’) variable

• a and b are the model parameters

Assume that the n points (x1, y1), (x2, y2), · · · (xn, yn) are perfectly lined,
so that each of them verifies the equation of the straight line:

y1 = a+ bx1

y2 = a+ bx2

· · · · · · · · ·

yn = a+ bxn

97

Or in matrix form:

y = Xβ ⇐⇒ y −Xβ = 0

where:

y =

y1

y2

· · ·
yn

 X =

1 x1

1 x2

· · · · · ·
1 xn

 β =

[
a
b

]

In the general case, the points are not exactly lined, so that:

y −Xβ = r

where r is the vector of residuals:

r = [r1, r2 · · · rn]> = y − ŷ

where ŷ = Xβ

It is possible to compute β so that ‖ r ‖ is minimal (least squares crite-
rion).

‖ r ‖2= r>r = r2
1 + r2

2 + · · ·+ r2
n =

n∑
i=1

r2
i =

n∑
i=1

(yi − ŷi)2 = SSr

where ŷi = a+ bxi and SSr is the sum of squared residuals.

Several methods allow the determination of β under the least squares
criterion. The QR and SVD algorithms have been described previously. Here
we will study the method of normal equations.

It may be shown that β is the solution of the system:

Aβ = c

with:
A = X>X c = X>y

so:
β = (X>X)−1(X>y)

98

14.2 Analysis of variance

The following equation holds:

SSt = SSe + SSr (14.1)

with:

SSt =
n∑
i=1

(yi − ȳ)2 SSe =
n∑
i=1

(ŷi − ȳ)2 SSr =
n∑
i=1

(yi − ŷi)2

• ȳ is the mean of the y values:

ȳ =
1

n

n∑
i=1

yi

• SSt is the total sum of squares ; it has (n− 1) degrees of freedom

• SSe is the explained sum of squares ; it has 1 degree of freedom.

• SSr is the residual sum of squares ; it has (n− 2) degrees of freedom

Note that the degrees of freedom (d.o.f.) are additive, just like the sums
of squares:

(n− 1) = 1 + (n− 2)

The variances are defined by dividing each sum of squares by the corre-
sponding number of d.o.f.

Vt =
SSt
n− 1

Ve = SSe Vr =
SSr
n− 2

These are the total, explained, and residual variances, respectively. Note
that the variances, unlike the sum of squares, are not additive!

The following quantities are derived from the above equations:

• the coefficient of determination r2

r2 =
SSe
SSt

r2 represents the percentage of the variations of y which are ‘explained’
by the independent variable. It is always comprised between 0 and 1.
A value of 1 indicates a perfect fit.

99

• the correlation coefficient r

It is the square root of the coefficient of determination, with the sign
of the slope b. It is therefore comprised between -1 and 1.

• the residual standard deviation sr

It is the square root of the residual variance (sr =
√
Vr). It is an esti-

mate of the error made on the measurement of the dependent variable
y. It should be 0 for a perfect fit.

• the variance ratio F

It is the ratio of the explained variance to the residual variance (F =
Ve/Vr). It should be infinite for a perfect fit.

14.3 Precision of parameters

The matrix:
V = Vr ·A−1 = Vr · (X>X)−1

is called the variance-covariance matrix of the parameters. It is a sym-
metric matrix with the following structure:

V =

[
Var(a) Cov(a, b)

Cov(a, b) Var(b)

]

The diagonal terms are the variances of the parameters, from which the
standard deviations are computed by:

sa =
√

Var(a) sb =
√

Var(b)

The off-diagonal term is the covariance of the two parameters, from which
the correlation coefficient rab is computed by:

rab =
Cov(a, b)

sasb

14.4 Probabilistic interpretation

It is assumed that the residuals (yi − ŷi) are identically and independently
distributed according to a normal distribution with mean 0 and standard
deviation σ (estimated by sr).

100

It may be shown that the regression parameters (a, b) are distributed
according to a Student distribution with (n− 2) d.o.f.

It is therefore possible to compute a confidence interval for each param-
eter, for instance: [

a− t1−α/2 · sa , a+ t1−α/2 · sa
]

where t1−α/2 is the value of the Student variable corresponding to the chosen
probability α (usually α = 0.05). This interval has a probability (1 − α) to
contain the ‘true’ value of the parameter.

It is also possible to compute a ‘critical’ value F1−α from the Fisher-
Snedecor distribution with 1 and (n − 2) d.o.f . The fit is considered satis-
factory if the variance ratio F exceeds 4 times the critical value.

Note : for the straight line fit, F1−α =
(
t1−α/2

)2

14.5 Weighted regression

It is assumed here that the variance vi = σ2
i of the measured value yi is not

constant.

The sums of squares become:

SSt =
n∑
i=1

wi(yi − ȳ)2 SSe =
n∑
i=1

wi(ŷi − ȳ)2 SSr =
n∑
i=1

wi(yi − ŷi)2

where wi denotes the ‘weight’, equal to 1/vi, and ȳ denotes the weighted
mean:

ȳ =

∑n
i=1wiyi∑n
i=1wi

The regression parameters b are estimated by:

b = (X>WX)−1(X>Wy)

where W is the diagonal matrix of weights:

W = diag(w1, w2, · · · , wn) =

w1 0 · · · 0
0 w2 · · · 0
· · · · · · · · · · · ·
0 0 0 wn

101

The values of r2, sr and F , as well as the variance-covariance matrix, are
computed as above (§ 14.2). The normalized residual for the i-th observation
is:

yi − ŷi
σi

= (yi − ŷi)
√
wi

These normalized residuals should follow the standard normal distribution.

14.6 Programming

14.6.1 Regression procedures

The following subroutines are available:

• LinFit(X(), Y(), B(), V()) for unweighted linear regression

• WLinFit(X(), Y(), S(), B(), V()) for weighted linear regression

The input parameters are:

• X(), Y() : coordinates of points

• S() : standard deviations of Y values (noted σi in paragraph 14.5)

The output parameters are:

• B() : regression parameters

• V() : inverse of the matrix of normal equations (noted A−1 in para-
graph 14.3). This is not the variance-covariance matrix. This one will
be computed by the routines described in the next paragraph.

After a call to one of these procedures, function MathErr returns one of
the following error codes:

• MatOk if no error occurred

• MatSing if the matrix of normal equations is quasi-singular

102

14.6.2 Quality of fit

The parameters used to test the quality of the fit are grouped in a user-defined
type:

TYPE TRegTest

Vr AS DOUBLE ’ Residual variance

R2 AS DOUBLE ’ Coefficient of determination

R2a AS DOUBLE ’ Adjusted coeff. of determination

F AS DOUBLE ’ Variance ratio (explained/residual)

Nu1 AS INTEGER ’ D.o.f. of explained variance

Nu2 AS INTEGER ’ D.o.f. of residual variance

END TYPE

They are computed by the following subroutines:

• RegTest(Y(), Ycalc(), V(), Test) for unweighted regression

• WRegTest(Y(), Ycalc(), S(), V(), Test) for weighted regression

The input parameters are:

• Y() : ordinates of points

• Ycalc() : Y values computed from the regression equation, using the
fitted parameters B(). This computation must be done before calling
RegTest or WRegTest.

• V() : the inverse matrix of the normal equations, as returned by the
regression procedures.

The output parameters are:

• V() : the variance-covariance matrix of the fitted parameters

• Test : variable of type TRegTest, as defined above.

14.7 Demo programs

These programs are located in the demo\curfit subdirectory of the FBMath

directory.

103

14.7.1 Unweighted linear regression

Program reglin.bas performs the least squares fit of a straight line, accord-
ing to the following equation:

Y = B(0) + B(1) * X

The parameter vector and variance-covariance matrix are therefore de-
clared as:

DIM AS DOUBLE B(0 TO 1), V(0 TO 1, 0 TO 1)

The program calls procedure LinFit, then computes the theoretical Y
values:

FOR I = 1 TO N

Ycalc(I) = B(0) + B(1) * X(I)

NEXT I

Note that this computation must be done before calling procedure RegTest

The critical values of Student’s t and Snedecor’s F are computed for the
chosen probability Alpha by using the functions from chapter 5.

T = InvStudent(N - 2, 1 - 0.5 * Alpha)

F = InvSnedecor(1, N - 2, 1 - Alpha)

The ouput shows the standardized residuals, equal to (yi − ŷi)/σ, where
σ is estimated by sr. They should be distributed according to the standard
normal distribution.

14.7.2 Weighted linear regression

Program wreglin.bas performs the weighted least squares fit of a straight
line. Here the standard deviations σi of the observed y values are stored in
a vector S() defined by the user.

The computations involve the same steps as with the previous program,
except that procedures WLinFit and WRegTest are used, and that the stan-
dardized residuals are computed as (yi − ŷi)/σi

The plot shows the error bars, corresponding to yi ± σi for each point.

104

Chapter 15

Multilinear regression and
principal component analysis

This chapter describes the routines available in FBMath for multilinear re-
gression, polynomial regression and principal component analysis.

15.1 Multilinear regression

15.1.1 Normal equations

The regression model is:

y = a+ bx1 + cx2 + · · ·

where the xi are m independent variables.

The method of normal equations, studied in chapter 14, is still applicable
with:

X =

1 x11 x12 · · · x1m

1 x21 x22 · · · x2m

· · · · · · · · · · · · · · ·
1 xn1 xn2 · · · xnm

There are p = m+ 1 parameters. The number of observations n must be

such that n > p.

Special case: The xi may be functions of another variable x, as long as
these functions do not contain parameters.

Examples:

• Polynomial: y = a+ bx+ cx2 + · · ·

105

• Fourier series: y = a+ b sinx+ c sin 2x+ · · ·

In such cases, the matrix X, the matrix of normal equations A = X>X
and the constant vector c = X>y will have special forms. For instance with
polynomial regression, if d is the degree of the polynomial:

X =

1 x1 x2

1 · · · xd1
1 x2 x2

2 · · · xd2
· · · · · · · · · · · · · · ·
1 xn x2

n · · · xdn

A =

n Σxi Σx2

i · · · Σxdi
Σxi Σx2

i Σx3
i · · · Σxd+1

i

· · · · · · · · · · · · · · ·
Σxdi Σxd+1

i Σxd+2
i · · · Σx2d

i

c =

Σyi

Σxiyi
· · ·

Σxdi yi

It is possible to use these special forms to simplify the computations. For
instance, only the first line and the last column of the above matrix A need
to be computed; the others terms are deduced by shifting.

15.1.2 Analysis of variance

Equation 14.1 still holds with the following modifications:

• the explained sum of squares SSe has (p− 1) degrees of freedom.

• the residual sum of squares SSr has (n− p) degrees of freedom

Note that the degrees of freedom are still additive:

(n− 1) = (p− 1) + (n− p)

The explained and residual variances become:

Ve =
SSe
p− 1

Vr =
SSr
n− p

The quantities r2, sr, F are derived as in § 14.1, but here the correlation
coefficient r is always positive.

106

In multilinear regression, the use of r2 may be misleading because it is
always possible to artificially increase its value by adding more independent
variables or using a higher degree polynomial. To overcome this drawback,
the adjusted coefficient of determination may be used instead:

r2
a = 1− (1− r2)

n− 1

n− p

15.1.3 Precision of parameters

The variance-covariance matrix V is computed as in chapter 14. It is a p× p
symmetric matrix such that:

• the diagonal term Vii is the variance of the i-th parameter

• the off-diagonal term Vij is the covariance of the i-th and j-th param-
eters

The correlation coefficient rij is computed by:

rij =
Vij√
ViiVjj

15.1.4 Probabilistic interpretation

Assuming that the residuals are identically and independently distributed
according to a normal distribution, the regression parameters are distributed
according to a Student distribution with (n − p) d.o.f. Confidence intervals
may be computed as in chapter 14.

The ‘critical’ value F1−α is computed from the Fisher-Snedecor distribu-

tion with (p−1) and (n−p) d.o.f. However, the relationship F1−α =
(
t1−α/2

)2

does not hold if p > 2.

15.1.5 Weighted regression

Weighted multilinear regression may be performed as for the simple linear
case (chap. 14).

107

15.1.6 Programming

The following subroutines are available:

• MulFit(X(), Y(), B(), V()) for unweighted multilinear regression

• WMulFit(X(), Y(), S(), B(), V()) for weighted multilinear regres-
sion

• PolFit(X(), Y(), B(), V()) for unweighted polynomial regression

• WPolFit(X(), Y(), S(), B(), V()) for weighted polynomial regres-
sion

where the parameters have the same meaning than in the simple linear
case (chap. 14), except that X() is a matrix in multilinear regression.

After a call to one of these procedures, function MathErr returns one of
the following error codes:

• MatOk if no error occurred

• MatSing if the matrix of normal equations is quasi-singular

• MatErrDim if the array dimensions do not match

15.2 Principal component analysis

15.2.1 Theory

The goal of Principal Component Analysis (PCA) is to replace a set of m
variables x1,x2, · · ·xm, which may be correlated, by another set f1, f2, · · · fm,
called the principal components or principal factors. These factors are inde-
pendent (uncorrelated) variables.

Usually, the algorithm starts with the correlation matrix R which is a
m×m symmetric matrix such that Rij is the correlation coefficient between
variable xi and variable xj.

The eigenvalues λ1, λ2, · · ·λm (in decreasing order) of matrix R are the
variances of the principal factors. Their sum

∑p
i=1 λi is equal to m. So, the

percentage of variance associated with the i-th factor is equal to λi/m.

If C is the matrix of eigenvectors of R, the correlation coefficient between
variable xi and factor fj (sometimes called loading) is:

RCij = Cij
√
λj

108

The coordinates of the principal factors (sometimes called scores) are
such that:

F = ZC

where Z denotes the matrix of scaled original variables:

Zij =
Xij −mj

sj

where mj and sj are the mean and standard deviation of the j-th variable.

Note that the reduced variables have means 0 and variances 1, while the
principal factors have means 0 and variances λi.

In most cases, a limited number of principal factors represent the most
part of the total variance. It is therefore possible to neglect the other factors
and to replace the m original (partially correlated) variables by a smaller set
of independent variables. These variables can then be used in a regression
analysis instead of the original ones (orthogonalized regression).

15.2.2 Programming

The following subroutines are available:

• VecMean(X(), M()) computes the mean vector M() from matrix X().

M(J) is the mean of the J-th column of the matrix.

• VecSD(X(), M(), S()) computes the standard deviations S() from
matrix X() and mean vector M().

S(J) is the standard deviation of the J-th column of the matrix.

• ScaleVar(X(), M(), S(), Z()) computes the scaled variables Z()

from the original variables X(), the means M() and the standard devi-
ations S().

• MatVarCov(X(), M(), V()) computes the variance-covariance matrix
V() from matrix X() and mean vector M()

V(I,J) is the covariance of the I-th and J-th column of X().

• MatCorrel(V(), R()) computes the correlation matrix R() from the
variance-covariance matrix V().

109

• PCA(R(), Lambda(), C(), Rc()) performs the principal component
analysis of the correlation matrix R(), which is destroyed. The eigen-
values are returned in vector Lambda(), the eigenvectors in the columns
of matrix C(). The matrix Rc() contains the correlation coefficients
(loadings) between the original variables (rows) and the principal fac-
tors (columns).

• PrinFac(Z(), C(), F()) computes the principal factors (scores) F()
from the scaled variables Z() and the matrix of eigenvectors C().

After a call to these procedures, function MathErr returns one of the
following error codes:

• MatOk if no error occurred

• MatErrDim if the array dimensions do not match

• MatNonConv if the iterative procedure (singular value decomposition)
did not converge in subroutine PCA

15.3 Demo programs

These programs are located in the demo\curfit subdirectory of the FBMath

directory.

15.3.1 Multilinear regression

Program regmult.bas performs a multilinear least squares fit with Nvar =
4 independent variables, according to the following equation:

Y = B(0) + B(1) * X1 + B(2) * X2 + B(3) * X3 + B(4) * X4

The data are stored in a matrix X() and a vector Y(). In agreement with
the presence of a constant term B(0), the first column of matrix X() is made
of 1’s.

The parameter vector and variance-covariance matrix are declared as:

DIM AS DOUBLE B(0 TO Nvar), V(0 TO Nvar, 0 TO Nvar)

The program calls procedure MulFit, then computes the theoretical Y
values:

110

FOR I = 1 TO N

Ycalc(I) = 0

FOR J = 0 TO Nvar

Ycalc(I) = Ycalc(I) + B(J) * X(I, J)

NEXT J

NEXT I

Note that this computation must be done before calling procedure RegTest

The critical values of Student’s t and Snedecor’s F are computed for the
chosen probability Alpha by using the functions from chapter 5.

T = InvStudent(Test.Nu2, 1 - 0.5 * Alpha)

F = InvSnedecor(Test.Nu1, Test.Nu2, 1 - Alpha)

where Test.Nu1 and Test.Nu2 are the numbers of d.o.f., returned by
procedure RegTest.

The ouput shows the standardized residuals, equal to (yi − ŷi)/σ, where
σ is estimated by sr. They should be distributed according to the standard
normal distribution.

Due to the multi-dimensional nature of the relationship, a plot of y as
a function of the x’s is not possible. Rather, the program plots a diagram
of the observed and computed values of y, together with the theoretical line
ŷ = y.

15.3.2 Polynomial regression

Program regpoly.bas performs a polynomial least squares fit. The structure
of the program is very similar to the previous one, with the degree of the
polynomial (Deg) playing the role of the number of variables (Nvar).

Here, only a vector X() is needed to store the values of the independent
variable, since the powers of x are computed by the polynomial regression
routine PolFit.

The theoretical Y values are computed by means of function Poly, studied
in chapter 9.

The program plots the fitted curve by calling the plotting subroutine
PlotFunc. The function which is passed to this subroutine is defined as:

FUNCTION PltFunc(X AS DOUBLE) AS DOUBLE

PltFunc = Poly(X, B(), Deg)

END FUNCTION

111

The definition of procedure PlotFunc does not allow additional param-
eters for PltFunc. This is the only reason why the parameter vector B() is
DIM SHARED.

15.3.3 Principal component analysis

There are three programs which use the same data set.

• Program pca.bas performs the principal component analysis of the
data.

• Program pcaplot1.bas plots the loadings in the plane defined by the
first two principal factors. The original variables appear as points in
the plane (each variable is identified by its number). For each point, the
coordinates (r1, r2) are the correlation coefficients of the corresponding
original variable with the two principal factors. The program plots the
correlation circle, defined by r2

1 + r2
2 = 1 (correlation with the first two

factors only).

• Program pcaplot2.bas plots the scores in the plane defined by the
first two principal factors. Each observation appears as a point in the
plane.

112

Chapter 16

Nonlinear regression

This chapter describes the routines available in FBMath for fitting models
which are nonlinear with respect to their parameters. For instance, the ex-
ponential model y = ae−bx is nonlinear with respect to the parameter b.

16.1 Theory

The regression model is:
y = f(x; a, b · · ·)

where f is a nonlinear function of the parameters a, b · · ·
Assume that we have a first estimate (a0, b0 · · ·) of the parameters. Let

us write the Taylor series expansion of y in the vicinity of this estimate:

y = y0 + y′a · (a− a0) + y′b · (b− b0) + · · ·

where:
y0 = f(x; a0, b0 · · ·)

y′a =
∂f

∂a
(x; a0, b0 · · ·)

y′b =
∂f

∂b
(x; a0, b0 · · ·)

· · · · · · · · · · · · · · · · · ·
The equation may be rewritten as:

y − y0 = y′a · (a− a0) + y′b · (b− b0) + · · ·

which corresponds to the linear regression problem:

z = J · δ

113

with:

z =

y1 − y0

1

y2 − y0
2

· · ·
yn − y0

n

 J =

y′a1 y′b1 · · ·
y′a2 y′b2 · · ·
· · · · · · · · ·
y′an y′bn · · ·

 δ =

 a− a0

b− b0

· · ·

where J is the Jacobian matrix, such that y′ai = ∂f(xi; a
0, b0 · · ·)/∂a etc.

Application of the linear regression relationships leads to:

δ = (J>J)−1(J>z) (16.1)

Knowing the correction vector δ, it is possible to compute better estimates
a and b of the parameters. The process is repeated until convergence of the
parameter estimates.

The method so described is known as the Gauss-Newton method. It is
usually combined with nonlinear optimization, usually Marquardt’s method,
in order to minimize the sum of squared residuals:

SSr =
n∑
i=1

(yi − ŷi)2 = Φ(a, b · · ·)

In this case, the gradient vector g and hessian matrix H of function Φ are
computed by the following relationships:

g = −J>z H = J>J (16.2)

so that the Gauss-Newton formula (16.1) becomes equivalent to the Newton-
Raphson formula for nonlinear optimization (p. 43).

Note that, in the previous formula:

1. g and H are scaled by a factor 1/2 since this factor cancels during the
computations.

2. The expression of H is only approximate, since a factor containing the
term (yi− ŷi) is neglected during the computation of the second partial
derivatives:

∂2Φ

∂a ∂b
=

n∑
i=1

[
∂ŷi
∂a

∂ŷi
∂b
− (yi − ŷi)

∂2ŷi
∂a ∂b

]

114

The residual variance is:

Vr =
SSr
n− p

where p is the number of parameters in the model.

It is still possible to compute r2 and F , as well as confidence intervals,
but their interpretation is less straightforward since the ANOVA relationship
(§ 14.1) does not hold for nonlinear models. In this case, r2 may be > 1 !
Moreover, the distribution of the parameters is only approximately described
by the Student distribution.

16.2 Monte-Carlo simulation

The distribution of the regression parameters may be simulated by the MCMC
method discussed in § 12.2 p. 70).

Let β denote the vector of model parameters. According to Bayes’ the-
orem, the posterior probability density π(β) of these parameters is given
by:

π(β) =
L(β)P (β)∫
L(β)P (β)dβ

=
L(β)P (β)

N

where P (β) denotes the prior probability density of the parameters and
L(β) denotes the likelihood, i.e. the probability of observing the experimental
results (xi, yi) given the parameters.

The integral which appears in the denominator is usually too complex to
be calculated and is therefore treated as a normalizing constant N .

Assuming that, for a given β, the residuals (yi − ŷi) are identically and
independently distributed according to a normal distribution with variance
σ2, the likelihood is given by:

L(β) =
n∏
i=1

(
1

σ
√

2π
exp

[
−(yi − ŷi)2

2σ2

])

If we choose a uniform prior probability P (β) over an interval B, the
posterior probability becomes:

π(β) = C
n∏
i=1

exp

[
−(yi − ŷi)2

2σ2

]

where C is a constant.

115

In order to use the Metropolis-Hastings algorithm, as described in chapter
12.2, we define the function:

F (β) =

−2 ln π(β)

C
=
∑n
i=1(yi − ŷi)2 if β ∈ B

∞ otherwise

(16.3)

It is the same objective function than for the nonlinear regression algo-
rithm, except that it is bounded on the interval B.

16.3 Demo programs

These programs are located in the demo\curfit subdirectory.

16.3.1 Nonlinear regression

Program regnlin.bas performs a nonlinear least squares fit of the exponen-
tial model:

y = ae−bx

which is coded as:

Y = B(1) * EXP(- B(2) * X)

The partial derivatives used to compute the Jacobian are:

∂y

∂a
= e−bx

∂y

∂b
= −axe−bx

Initial estimates of the parameters B() are obtained by linearization:

ln y = ln a− bx

However, this transformation modifies the standard deviations of the in-
dependent variables:

σ(ln y) ≈ d ln y =
dy

y
≈ σ(y)

y

It is therefore recommended to use weighted linear regression for this step.

Subroutine ApproxFit selects the data points for which the transforma-
tion is appropriate (i. e. y > 0) and stores the transformed coordinates and
standard deviations in 3 vectors X1(), Y1(), S1() which are passed to the
weighted linear regression subroutine WLinFit. The results are returned in
the global arrays B() and V(). The parameters are transformed back to the
original form of the model:

116

B(1) = EXP(B(1))

B(2) = - B(2)

Marquardt’s method is then used to perform nonlinear minimization of
the residual sum of squares. Subroutine Marquardt needs two other proce-
dures:

• a function ObjFunc(B()) which computes the objective function to be
minimized

• a subroutine HessGrad(B(), G(), H()) which computes the Gradient
and Hessian of the objective function

Since the parameter lists of these procedures cannot be modified, the
other variables which they must access (such as the point coordinates X(),

Y()) are made global by means of DIM SHARED statements.

The results of the minimization are printed as with the linear regression
programs, except that the correlation coefficients are shown only if r ≤ 1.

The program may be adapted to another regression model by changing
the following parts:

• the function name (constant FuncName)

• the constants FirstParam and LastParam which define the bounds of
the parameter array B()

• the subroutine ApproxFit which computes the initial estimates of the
parameters

• the definition of the regression model in functions ObjFunc and PltFunc

• the definition of derivatives in subroutine HessGrad

16.3.2 Monte-Carlo simulation

Program mcsim.bas simulates the posterior distribution of the regression
parameters for the previous exponential model. The interval B must be
defined by the user. The objective function is defined as with the previous
program, except that it is set to a high value if one of the parameters goes
outside the bounds. When the simulation is done, the program draws a plot
showing the distribution of the parameters.

117

Chapter 17

String functions

Some string functions have been added to FBMath, mainly to help printing
results.

17.1 Fill functions

• function RFill(S, L) returns string S completed with trailing blanks
for a total length L

• function LFill(S, L) returns string S completed with leading blanks
for a total length L

• function CFill(S, L) returns string S completed with leading blanks
so as to center the string on a total length L (80 characters by default)

17.2 Character replacement

Subroutine Replace(S, C1, C2) replaces in string S all the occurences of
character C1 by character C2

17.3 Parsing

Subroutine Parse(S, Delim, Elem(), N) parses string S into its constitu-
tive fields (separated by Delim). The fields are returned in array Elem().
The number of fields is returned in N.

The array Elem() must be dimensioned by the calling program. If it is
not large enough, the number of extracted fields will be limited to the size
of the array.

118

17.4 Formatting functions

These functions are based on the built-in function Format, which is declared
in the include file string.bi. This file is automatically added each time you
include fbmath.bi.

• function FloatToStr(X, Ntot, Ndec, E) converts the double preci-
sion number X to a string of Ntot characters, with Ndec decimals. The
boolean parameter E must be set to True (-1) to get exponential nota-
tion (e. g. 6.626E-034).

The default values are: Ntot = 10, Ndec = 4 and E = False, so that,
for instance, FloatToStr(Pi) will return the string 3.1416 with 4
leading blanks.

• function RemZero(S) will remove the non-significant zeroes from a
string S which represents a number (usually the output of FloatToStr).

e.g. RemZero("1.2300") will return 1.23 and RemZero("1.2300E+00")

will return 1.23E+00

• function IntToStr(N, Ntot) converts the integer N to a string of Ntot
characters. Default is Ntot = 10.

119

