Gelöste Aufgaben:

1	2	3	4	5

Name:

Matrikel-Nr.:

Aufgabe 1. A function f is given by $f(0)=1$ und $f(n+1)=(n+1) \cdot f(n)$ for $n \geq 0$. Show by induction that $f(2 n) / f(n)^{2} \leq 4^{n}$ for all natural numbers n.

Aufgabe 2. Show

$$
\forall x \in \mathbb{R} \forall y \in \mathbb{R}: \quad x^{2}+y^{4}=10 \Longrightarrow x \leq 4 .
$$

Hint: (indirect proof) To show $A \Longrightarrow B$ one shows that $A \wedge \neg B$ leads to a contradiction.

Aufgabe 3. Let $f_{1}, f_{2}, f_{3}, \ldots$ be a sequence of sequences of natural numbers. We write $f_{i}(n)$ for the n-th number in the i-th sequence. Let g be the sequence given by $g(n)=f_{n}(n)+1$. Show

$$
\forall i \in \mathbb{N}: \quad g \neq f_{i} .
$$

In other words, show that g is not among the $f_{1}, f_{2}, f_{3}, \ldots$ Hint: (indirect proof) Assume that there were some $k \in \mathbb{N}$ such that $g=f_{k}$ and show that the computation of $g(k)$ leads to a contradiction.

Aufgabe 4. Let $L \subseteq \Sigma^{*}$ be a language over the alphabet $\Sigma=\{a, b, c, d\}$ such that a word w is in L if and only if it is either a or b or of the form $w=d u c v d$ where u and v are words of L. For example, dacad, ddacbdcad, $d d d b c b d c d b c b d d c a d$ are words in L. Show by induction that every word of L contains an even number of the letter d.
Note that a language is just a set of words and a word is simply a sequence of letters from the alphabet.

Aufgabe 5. Solve the following tasks.

1. Write down a deterministic finite state machine D whose automata language is $L(D)=\{$ finite, language $\}$.
2. Let $L=\left\{10^{n} 1 \mid n\right.$ is an even number less than 10$\}$. Construct a DFSM D such that $L=L(D)$.
3. Does for each finite language L exist a DFSM M so that $L=L(M)$?
