
2)

We design a set-associative cache with parameters:

• Address size A: 32 bits
• Word size W: 32 bits
• Capacity C: 256 bytes
• Associativity N: 2
• Block size b: 4words
• Replacement policy: LRU
• Write policy: write back

a)

How many sets S does the cache have?

𝑆 =
𝐵
𝑁

=
𝐶
𝑏
𝑁

=

256 𝑏𝑦𝑡𝑒𝑠
16 𝑏𝑦𝑡𝑒𝑠

2
=

16 𝑏𝑙𝑜𝑐𝑘𝑠
2

= 8

b)

Specify the bit ranges for the tag, set index, block offset, and byte offset of the address.

• Tag: 31:7
• Set index: 6:4
• Block offset: 3:2
• Byte offset: 1:0

c)

Determine the number of data bits and the number of directory bits (tag, valid, etc.) required to
implement the cache.

Single set:

• Directory bits: Use (1) + 2*Dirty (1) + 2*Valid (1) + 2*Tag (25) = 55 bits
• Data bits: ways (2) * block size (4) * word size (32) = 256 bits

Total (8 sets):

• Directory bits: 55 bits * 8 sets = 440 bits
• Data bits: 256 bits * 8 sets = 2048 bits

d)

You have a supply of 4x8 SRAM arrays, 2:1 multiplexers and equality comparators with 32-bit inputs,
and 2-input logic gates and inverters. Using these building blocks, design the read-part of the cache.
How many building blocks of each type do you need?

• we need 64 words for data; thus 64 SRAMs for data
• we need at least 440bits = 55 bytes for directory info; take 16 SRAMs for directory info

(theoretically we need only 13.75 SRAMs)
• We need one 2:1 MUX for the two ways and a 4:1 MUX for each way, thus 1 + 2 ⋅ (22 −

1) = 7 2:1 MUX
• 2 equality comparators
• 2 AND-gates
• 1 OR-gate

