
How to use FBdebugger

1. Create a debug build of your code
The debugger needs additional information in the executable to be able to display corresponding

source code (position) to the currently executed program code (position) and for some other useful

things like variable inspection.

To enable inclusion of debug information in the executable rebuild your executable with the compiler

parameter “-g”.

If you are using a IDE ensure that “-g” is contained in the used compiler command line (see

respective documentation for your IDE).

e.g. if you are normally building with “fbc -exx myprogram.bas” change it to:

fbc -g -exx myprogram.bas

Ensure that you (re)compile/(re)build your executable once you changed the command line in case

you are using an IDE.

2. Launch your executable using FBdebugger

First make sure to choose the correct version of FBdebugger: 32-bit for 32-bit executables and 64-bit

for 64-bit executables. Do not mix 32-bit and 64-bit.

To find out whether you are compiling a 32-bit or 64-bit executable there are multiple options. An

easy one is to add “-v” to the compiler command line, which will generate a detailed compiler output

similar to this (assembling/linking details stripped):

C:\Program Files (x86)\FreeBASIC\fbc -v "test.bas"
FreeBASIC Compiler - Version 1.02.1 (04-25-2015), built for win32 (32bit)
Copyright (C) 2004-2015 The FreeBASIC development team.
standalone
target: win32, 486, 32bit
compiling: test.bas -o test.asm (main module)
assembling: […]
linking: […]

Make done

Note the information displayed as “target”, which tells you exactly what you need.

Now you can launch the correct version of FBdebugger. There exist multiple ways of debugging your

application:

 Launch your application from the debugger

 Attach the debugger to your (already running) application

We will use the first option. The other option could be used e.g. to debug a hanging application.

To launch your executable in FBdebugger open it via the “Select EXE/BAS” button in the toolbar (see

picture). Alternatively, you can drag&drop your executable into the debugger window or onto the

FBdebugger executable or pass it as first command line argument.

The debugger will launch your executable, but immediately halt it before the first executable line is

executed.

On the left side of the window you can see your source code with the current execution position

(underlined).

On the right side of the window you can get information about the running program. The following

Tabs are available:

 “Proc/var” shows the variables in the current scope and its datatype and values

 “Procs” lists procedures (subs/functions) in your program

 “Threads” shows information about the different running threads and their current

execution position

 “Watched Vars” allows you define special variables, whose value you want to track

3. Step through your program
To understand what your program does (wrong) you execute it in small steps and analyze its state

(e.g. variable values) from step to step. FBdebugger provides several commands to perform different

kinds of steps in your program:

 Single step: execute the current line and halt at the next executable line. It steps into

subs/functions.

 Run to cursor: place the cursor somewhere in the source code in the debugger and press this

button to run the program until the cursor position is reached. Note that you will have to place the

cursor on a valid position. The program won’t halt if it doesn’t reach that position.

 Step over: execute the current line and halt at the next executable line at the same level. Does

step over subs/functions (a call is done in a single step).

 Step into: execute until a sub/function is called and halt at the first executable line of that

sub/function.

Step to end of sub/function: execute the current sub/function until it is left and halt at the last

executable line of that sub function (which is END SUB or END FUNCTION).

Step out: execute the current sub/function until it is left and halt at the first executable line

after the sub/function was already left.

Step automatically: perform single steps automatically in the debugger until the user presses

the “halt” button. The steps are done at a speed that allows the eye to follow the execution (except

there are jumps…)

Run/Continue: run/continue the program execution. The program can be halted again by

pressing the “halt” button. Then the user can resume debugging stepwise. The execution is also

halted when a (user-defined) breakpoint is hit.

Halt: halts a currently running program. Use to pause program execution if the debugger is in

“step auto” or “run” mode to resume debugging afterwards. The program is not halted immediately,

but as soon as the next executable line is reached.

Release: run/continue the program execution without debugging. The program can be halted

again by pressing the “halt” button. Then the user can resume debugging stepwise. Breakpoints are

ignored!

Restart: terminate the currently running program and restart it. The program is again halted at

the first executable line.

Breakpoints are used to define certain positions in your source code that cause the debugger to halt

the program, when such a position is reached. They are used to debug a specific part of a program,

while the other parts can be executed normally.

Locate the cursor on an executable line in the source code and press F3 to set/unset a breakpoint on

that location. You can set multiple breakpoints across your code. Finally press the “Run/Continue”

button to run your program until a breakpoint is hit.

The “Proc/Var” window on the right side of FBdebugger lists all the variables known in the current

program execution. You can view its current values, follow their storage location in memory (view a

hexdump) or even modify them. Note that FreeBasic converts all names to uppercase during

compilation.

